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ABSTRACT 

The thesis of “Study on the quasi-zero stiffness vibration isolation system” is 

presented in six chapters.  

The thesis introduces an innovation quasi -zero stiffness adaptive vibration isolation 

model (QSAVIM) composed by semicircular CAM-wedge-pneumatic spring mechanism. 

One with the positive stiffness including the wedges, the rollers and the two rubber air 

springs, is used to support the load. The other comprising the semi-circular cams, the 

rollers and other air springs, whose stiffness is negative, is employed to adjust the system 

stiffness. In this model, a component which is non-steel elastic element is the pneumatic 

spring including rubber air spring and pneumatic cylinder are employed respectively in 

the proposal model.  

The restoring model of a commercial rubber air spring is analyzed and developed, 

which is contributed by three factors including compressed air, friction and 

viscoelasticity of the rubber bellow. Herein, the nonlinear hysteresis model of the rubber 

tube is also considered. Then, an experimental rig is  set up to identify and verify the 

parameters of the rubber air spring model. In addition, the friction force of the pneumatic 

cylinder is also investigated through using virtual prototyping technology. 

The complex nonlinear dynamic response of the quasi-zero stiffness adaptive 

vibration isolation model which is a parallel connection between a load bearing 

mechanism and a stiffness corrected one is realized. The important feature of the 

proposed model is that it is easy not only to adjust the stiffness to adapt according to the 

change of the isolated mass but to improve the isolation effectiveness in low frequency 

region that is useful in practical application. The studied results show that the 

effectiveness of the proposed model is much better than the equivalent traditional model. 
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NOMENCLATURE 

Latin letters  

 A Area of the cylinder in m
2 

 Ae Effective area of the rubber air spring in m
2
 

Awh Effective area of the rubber air spring at the working height in m
2 

Cd Damping coefficient in Ns/m 

cp
 

Specific heat capacity at constant pressure  

cv
 

Specific heat capacity at constant volume 

D Dissipation function 

d Distance between the base and the DSEP in mm 

Ek Kinetic Energy in Joule  

Ep Potential Energy in Joule 

F Force in N 

Fair Air compressed force in N 

Fap Approximate force in N 

Fc Coulomb friction force in N 

Ffri Frictional force inside rubber material in N 

Fst Static friction force in N 

Fg Gravity force in N 

Fras Force of rubber air spring in N 

Fs Restoring force in N 

Fsf Sliding frictional force between piston and cylinder in N 

Fvie Viscoelastic force in N 

FLMB Restoring force of load bearing mechanism in N 
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FSCM Restoring force of stiffness corrected mechanism in N 

Fs Restoring force of the QSAVIM in N 

fe External force in N 

Gin Mass low rates at inlet in kg/s 

Gout Mass low rates at outlet in kg/s 

g Acceleration of gravity in m/s
2 

Ho
 Static vertical deformation of the QSAVIM in mm 

h Height of the cylinder in mm 

J Cost function  

Kair Compressed air stiffness in N/m 

KDSEP Stiffness at the DSEP in N/m 

KSCM Stiffness of the SCM in N/m 

KLBM Stiffness of the LBM in N/m 

mair Mass of the air in the pneumatic working chamber in kg 

M Mass of the isolated object in kg 

n Ratio of specific heat capacity. 

ns  Exponent of the Stribeck curve 

P Pressure in N/m
2 

Patm Atmosphere pressure in N/m
2
 

Pwh  Pressure of the rubber air spring at the working height in N/m
2
 

Pac Pressure of air in the auxiliary chamber 

Pcy Pressure in pneumatic cylinder 

Pso  Pressure in the cylinder at the initial position 
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Q  Generalized force  

R Radius of the semicircular cam in mm 

Rair Gas constant in J/Kg.K 

r Radius of the roller in mm 

T  Temperature of the air in the pneumatic working chamber in K 

Ta  Displacement transmissibility 

TF Force Transmissibility 

u Relative displacement between then center of the cam and DSEP in mm 

Vr Relative velocity between two contacting surfaces in m/s 

vs Stribeck velocity in m/s 

V Volume in m
3
 

Ve Effective volume in m
3 

Vac Volume of auxiliary chamber  

Vcy Volume of cylinder  

Vwh Effective volume of the rubber air spring at the working height in m
3
 

Vd Volume of the cylinder at the working height in m
3
 

x Displacement of one end of the rubber air spring or cylinder in mm 

xwh Deformation of the rubber air spring at the working height in mm 

ze Excitation in mm 

z Absolute displacement of the isolated object in mm 

Z Absolute vibration amplitude of the isolated object in mm 

Greek letters  

α Angle of the wedge in degree 

,  Phase angle between u and ze 
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 Phase angle between z and ze 

µ  Pressure ratio 

ω  Excitation frequency in rad/s 

ωn Natural frequency in rad/s 

α ht  Heat transfer coefficient 

a the heat transfer surface area 

 the viscous friction coefficient, 

 Damping ratio  

L Vertical displacement of the load plate 

Subscripts  

ac Auxiliary chamber  

atm Atmosphere 

cy Cylinder  

e Excitation  

ef External force 

F Force 

k Kinetic  

LBM Load bearing mechanism 

p Potential  

SCM Stiffness corrected mechanism 

ras Rubber air spring 

s Spring  

sf Sliding force 
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r Relative  

vie Viscoelasticity 

wh Working height 

Superscripts  

-or  Dimensionless quantity  

 Time derivative  

 Dimensionless time derivative 
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CHAPTER 1 

 INTRODUCTION 

 

1.1 The necessity of vibration isolation  

In engineering systems, vibration is one of the reasons which can cause damages or 

unstable to machineries, equipment. etc. Furthermore, it also affects directly on human 

healthy as well as working effectiveness and reduces comfort when human must work 

on the systems which exist the unwanted vibrations. For example, when vehicles move 

on the ground, the floor frame has still vibrated because of the rough road surface and 

the vibration from the engines, although vehicles are always equipped suspension 

systems. 

Especially, vibrations with low frequencies (<25Hz), these are dangerous for human 

spine [1-2] in which the authors have carried out the test to investigate and determine 

the number of reflecting and discomfort. Then, in [3] it has been studied to find out 

twelve subjects estimated the discomfort caused by low frequency vibration (<5Hz).  

Accordingly, in order to eliminate the effects of unwanted vibration, it is necessary 

to delete this source. However, this method is not always implemented because 

vibration may be generated during the working process of machineries, equipment and 

vehicles moving on the roughness of the road. For these reasons, attaching intelligent 

isolators between the isolated object and the unwanted vibration source is necessary. 

However, present traditional linear isolators including an elastic element and a damper 

in parallel is very difficult to prevent the transmission of the low frequency vibrations 

to other elements of the system. Therefore, the motivation of this thesis is to develop an 

adaptive low frequency vibration isolator. 
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1.2 The aim of the research 

This research aims to develop an innovated quasi-zero stiffness adaptive vibration 

isolation model which can broaden the isolation range toward the low frequency, 

increases the vibration attenuation rate compared with the equivalent conventional 

isolator but remain the load supporting capacity and low deformation. 

1.3 Problems are needed solutions 

In order to achieve the overall aim, the specific problems are considered as 

following: 

- Studying comprehensively types of vibration isolation model including passive 

and active, advantage and limitation of each type. 

- Developing an innovated quasi-zero stiffness adaptive vibration isolation model 

featuring non-steel elastic element  

- Studying and identifying the restoring properties of elastic elements without 

steel material. 

- Analyzing the nonlinear dynamic response comprising bifurcation as well as 

jump frequency phenomenon; 

- Simulating, experimenting and evaluating the proposed model. 

1.4 Research scope and object: 

The scope of this thesis is: 

- Non-steel elastic element is the pneumatic spring 

- Isolation region is within 32-63 (rad/s) corresponding to 5-10 (Hz) 
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1.5 Research approach 

Inheritability: studying and synthesizing previous works related to vibration 

isolation methods to develop a vibration isolation model featuring quasi-zero stiffness 

characteristic.  

Analysis: establishing the stiffness model, dynamic equation, vibration 

transmissibility of the system through using thermodynamic laws, ideal gas equations, 

mechanism laws, etc. 

Simulation: from analysis results, the simulation method is realized to determine 

nonlinear dynamic response and isolated effectiveness of the system. 

Experiment: verifying and comparing the dynamic response and isolation 

effectiveness of the proposed model compared with that of the equivalent linear model.  

1.6 The contents of the thesis: 

In order to achieve the objectives above, the thesis” Study on the quasi-zero 

stiffness vibration isolation system” will solve some problems as following: 

Literature reviews:   

- Studying on the demand of the vibration isolation especially under low frequency 

excitation. 

- Referring to the previous studies about the vibration isolation methods.  

- Presenting the necessary of the thesis, the object, scope and objectives of the 

thesis. Moreover, the scientific contribution and application of the thesis have 

also showed. 

Fundamental of relative theories: in order to consider the dynamic response, the 

vibration transmissibility and stability of the proposed model, some relative theories 

such as thermodynamics, Normal form, Multi-scale and Poincare map are employed. In 

addition, some model such as Berg model, Kelvin-Voigt are also used to analyzed the 

suggested system characteristics. 
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Quasi-zero stiffness adaptive vibration isolation model using a rubber air 

spring: 

- An innovated quasi-zero stiffness adaptive vibration isolation system using 

rubber air spring is introduced. 

- The force models of which such as compressed air, frictional and viscoelastic 

forces are analyzed. 

- An experimental model is set up to identify the restoring characteristic of a rubber 

air spring. 

- The stiffness model and dynamic equation is established and the complex 

dynamic analysis of the system was conducted. 

- The effects of configurative parameters on stiffness curve and equilibrium 

position are analyzed. 

- The vibration transmissibility and stability of the system was examined, the jump 

and bifurcation phenomena were considered 

- An experiment to compare the isolation effectiveness between the QSAVIM and 

ETVIM are carried out. 

Quasi-zero stiffness adaptive vibration isolator using a pneumatic spring: 

- Another model of the isolator which is modified by replacing the air spring by a 

pneumatic cylinder. 

- The stiffness of a pneumatic cylinder is analyzed and the frictional model is 

investigated by using virtual prototyping technology.  

- The stiffness of the modified model is found. The stiffness of each mechanism 

and the equilibrium position of the modified model are also analyzed. 

- The effects of the configuration such as the auxiliary tank volume as well as the 

wedge angle on the system stiffness are considered.  

- The frequency-amplitude relation and the stability of the steady state solution are 

studied. Simultaneously, the amplitude-frequency curves obtained by Multi-scale 

method and fourth-order Runge-Kutta algorithm are compared.  
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- To obtain the solution of the dynamic response, the family of the initial 

conditions named the attractor-basin phase portrait affecting on the dynamic 

response will be detected in three cases.  

1.7 Organization of thesis: 

Chapter 1. Introduction 

Chapter 2. Literature review 

Chapter 3. Fundamental of relative theories 

Chapter 4.  Quasi-zero stiffness adaptive vibration isolator using rubber air spring 

Chapter 5: Quasi-zero stiffness adaptive vibration isolator using pneumatic cylinder 

Chapter 6. Conclusions and Future works 

Published papers 

References 

1.8 The obtained results 

With the objectives and the content of the thesis, the author gains some 

following results: 

- The physical models of the quasi-zero stiffness adaptive vibration isolation 

system using rubber air spring and pneumatic cylinder are described. 

- The mathematical model of the proposed system is defined. 

- The vibration transmissibility equation is found out and analyzed. 

- The effects of the configuration on the system stiffness are investigated. 

- The test - rig to identify the characteristics of a rubber air spring as well as 

pneumatic cylinder is set up. 

- An experiment to compare the isolation effectiveness between the QSAVIM and 

ETVIM are carried out. 

- A novel QSAVIM design procedure is suggested. 
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1.9 The scientific and application contribution of the thesis: 

The scientific contributions of this thesis  

- Study comprehensively quasi-zero stiffness adaptive vibration isolation model 

using air spring including rubber air spring and pneumatic cylinder adding 

auxiliary tank to prevent the unwanted effects of low frequency vibrations (32 

rad/s) to the isolated object. This is frequency region in which it can be a 

challenge for currently traditional isolation method.  

- The stiffness model of the air spring as well as hysteresis model and sliding 

frictional model was analyzed and identified to contribute for analyzing dynamic 

response of the proposed isolation model.  

- The effects of the configurative and working parameters on the stiffness curve 

and the nonlinear dynamic response of the system evaluated.  

- The effect of the damping coefficient on the vibration transmissibility of the 

quasi-zero stiffness model is analyzed and simulated.   

- Design procedure of the proposed system is offered  

-  Especially, another important contribution is to establish the equations of 

vibration transmission of the proposed system for purpose of prediction of the 

isolation effectiveness  

The practical contributions of this thesis  

- The proposed model has an applied potential in vibration isolation fields such as: 

suspension for vehicle, isolation seat for driver as well as passengers, isolation 

table for measurement instrument, vibration sensitive equipment, etc.  

- Especially, the proposed model can fabricate and apply easily in Viet Nam. It is 

completely able to implement technology transfer. 
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SUMMARY OF CHAPTER 1 

In this chapter, the necessary of the vibration isolation is presented. Next, the works 

in the vibration isolation field will be studied and synthesized. From that, an innovated 

the quasi-zero stiffness vibration isolation model is developed which meets mentioned 

objectives 
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CHAPTER 2 

LITTERATURE REVIEW 

 

The theoretical methods such as vibration isolation as well as some particular works 

in the quasi-zero stiffness vibration isolation field have been researched. From these 

results, the gap is found out by the author to propose a quasi-zero stiffness vibration 

isolator system using air springs thanks to taking the merits of these two objects. It is 

said that the proposed model can guarantee both the desired low stiffness and the load 

bearing ability. 

2.1. Vibration Isolation 

 

Fig. 2.1. A conventional vibration isolation system [4] 

Fig. 2.1 illustrates a conventional linear vibration isolation system comprising a 

spring (K) connected in parallel with a damper (C) to bear a load mass (M). The 

vibration transmissibility is given in [4] as below: 
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z is the displacement of the mass in mm 

ze is the excitation in mm 

 is the excited frequency in rad/s 

/n K M  is the natural frequency in rad/s 

 

Fig. 2.2 The transmissibility curve of the conventional vibration isolation 

system 

As shown in Fig. 2.2, if the excited frequency is smaller than 2 n , the vibration 

level of the mass is higher than the excitation whereas the linear isolator starts to 

suppress the vibration transmissibility when the excitation frequency is larger than

2 n . Besides, it is worthy to see that the lower the natural frequency, the higher the 

isolation effectiveness is and the more the isolation region is enlarged.  
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2.2. Models of proposed vibration isolation.  

From above analysis, it may be revealed that one of the meaningful methods to 

decrease the natural frequency is either to reduce the stiffness of the springs or to 

increase the weight of the isolated object. However, the latter is difficult to apply in 

practice.  

2.2.1. Isolated model using Euler spring 

Decreasing the stiffness to expand the isolation range has been researched by many 

authors. For example, in the model of N. Virgin et al. [5] as plotted in Fig. 2.3, a thin 

strip is bent such that the two ends are brought together and clamped to form a teardrop 

shape, which is considered as a spring to bear a load, its stiffness depends on the length 

of the strip. When the length is increased, the stiffness is reduced. 

 

Fig. 2.3 A model of low frequency vibration isolation [5] 

Next, a vibration isolator using a Euler spring is suggested by E.J. Chin et al. [6] as 

in Fig. 2.4 in which by implementing anti-spring technique, the resonance frequency is 

significant improved.  
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Fig.2.4 A QZS vibration isolation model for low frequency in vertical direction [6] 

J. Winterflood et al. [7] proposed a novel vertical suspension technique using the 

column spring in Euler bucking mode which can achieve the spring rate reduction. 

Because the Euler spring is constrained within pivoted as well as the higher internal 

modes thanks to the reduction of the working range of the spring. 

 

Fig.2.5 A simple structure for mounting and constraining Euler springs [7] 

As known, the function of the springs is not only to absorb the energy but also to 

carry load. The lower the stiffness, the lower the load supporting ability as well as the 

larger the deflection is. This is one of the limitations for applying these springs to 

vibration isolation models to attenuate vibration in low frequency range.  This 

dichotomy is also the challenge for scientists, scholars how to find the solutions which 
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overcome the obstacles on upgrading the isolation effectiveness, and reducing the static 

deformation but remaining the load bearing capacity. 

2.2.2. Isolated model featuring quasi-zero stiffness characteristic  

In general, isolators, which used the mechanical springs as mentioned above, is able 

to isolate vibration. However, their disadvantage is that it cannot ensure both the low 

stiffness and the load bearing ability at the same time. 

In order to overcome these weaknesses, QZS vibration isolation models have been 

attracted by scientific and engineering community. For example, A. Carrella et al. [8] 

designed a model concluded vertical springs with positive stiffness connected to a pair 

of oblique springs with negative stiffness. The main feature of this study is to use the 

negative element as shown in Fig.2.6 without large deformation, this study shows that 

in order to obtain the large deformation from the equilibrium position, for example, the 

authors find out the geometrical relationship between the parameters and stiffness such 

as the optimized inclination from 48 to 57 degree. 

 

Fig.2.6 A QZS vibration isolation model for low frequency [8]   

Besides, another novel dynamic model of QZS isolator constructed by a positive 

stiffness component and a pair of inclined linear spring providing negative stiffness 

was also suggested Z. Hao et al. [9] as in Fig. 2.7. Besides, in order to expand previous 
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studies of HSLDS isolator, a passive isolator combining the HSLDS spatial pendulum 

is developed by G. Dong et al. [10]. 

 
Fig. 2.7 Dynamical model with low frequency comprising a vertical and a pair of 

oblique springs [9] 

A Carrella et al. introduced another vibration isolator including two horizontal 

springs in parallel with a vertical spring [11] as in Fig. 2.8. This system indicates that 

the more the stiffness decreases, the more the nonlinearity characteristic slows down. 

 

Fig. 2.8 Simple model of a nonlinear isolator that behaves as a Duffing oscillator at 

low amplitudes of excitation [11]. 

 X. Wang et al. [12] which shown in Fig. 2.9 analyzed the parameters effects on the 

isolation response of a HSLDS isolator. Theoretical analysis and experimental 
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investigation of this model was carried out by Z. Hu et al. [13], indicating the isolated 

model is very effectiveness in low excitation frequency region.  

 

Fig. 2.9 Scheme of HSLDS isolator [12] 

Besides, A. O. Oyelade [14], which is indicated in Fig.2.10, proposed a vibration 

isolator by combining a bar and a Euler beam to obtain low dynamic stiffness, some 

geometric imperfection of the Euler beam is identified, hence, the isolation range of 

operation can be widened. 

 

Fig.2.10 Proposed isolation system using Euler buckled beams with bar connected to 

the seat and (b) detailed part of the seat. [14] 

Based on this, X. Liu et al. [15] investigated a QZS vibration isolator consisting of a 

Euler bucked strut and a linear damper-spring. Through adding Coulomb friction by a 
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linear transmissibility at the resonance frequency and decrease the effect of the 

excitation performance as known in Fig.2.11. 

 

Fig.2.11. Schematic model of Quasi-zero stiffness isolator with Coulomb 

Damping.[15] 

Moreover, in order to enrich the vibration effectiveness, it is necessary to 

supplement the executive structure like cylinder or motor which makes the isolation 

system more complex and expensive. Based on these, employing the HSLDS to 

develop the isolator. 

C. Liu et al. [16] experimented a QZS vibration isolator with five transverse groove 

springs as shown in Fig.2.12. The results show the good isolation performance, the 

wide frequency range and low peak transmissibility. 

 

Fig 2.12 Simplified mechanical analysis model of the five-spring QZS vibration 

isolator (this position is just the static equilibrium position) [16] 
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K. Ye et al. [17] proposed a coupled translational-rotational QZS vibration isolator 

in Fig.2.13, which uses the cam-roller mechanism to integrate the two motions above 

and isolate the vibrations in two directions simultaneously, can exhibit the better 

isolation performance in the band of low frequency than that of the linear system. 

Through simulation, the relation between the amplitude and frequency can be 

investigated. 

 

Fig.2.13 Mechanism of the proposed translational-rotational QZS structure: (a) the 

initial condition, (b) with force and moment applied [17] 

 

Fig.2.14 Three-dimensional vibration isolation diagram: (1) base, (2) support column, 

(3) a skateboard, (4) a connecting rod, (5) stage, (6) vertical springs, (7) slider, and (8) 

tension spring  

(b) 3D-modeling of the vibration isolator: (9) isolated objects and (10) rollers [18] 
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Another QZS vibration isolator combining a tension spring with a vertical linear 

spring is studied by Q. Meng et al. [18] as in Fig.2.14. This investigation is useful for 

rehabilitation application because of the low stiffness and transmissibility. The 

vibration isolator includes the two horizontal springs with the vertical spring, in which 

the stiffness of these springs can be adjusted leads to the system natural frequency 

reduce, in consequence, widen the frequency band towards the low frequency. 

For example, T.D. Le et al. [19-20] analyzed theoretically and simulated a low 

frequency vibration isolator as presented in Fig.2.15, showing a resonant peak 

including the amplitude and frequency lower than that of equivalent linear isolator, the 

characteristic of this system is a symmetric negative structure both to reduce the 

dynamic stiffness and to remain the load supporting capacity through adjusting the 

system geometry parameters to regulate the system stiffness. The simulation results 

show that the load is remained at equilibrium position by the balance of the 

compressed force of vertical spring and gravity force. Therefore, the load bearing 

ability is only dependent on the vertical spring stiffness and its initial deformation.  

 

Fig.2.15. A QZS vibration isolation model for low frequency as designed in [19-20] 
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X. Sun et al. [21] designed a time-delayed active control to improve the QZS 

vibration isolator the spring and time-delayed (hình 2.16) which can be able to control 

the results (a) the controller is not to change the static characteristic, for example, static 

equilibrium state but the dynamic state delayed-time is shown. In a switch which is 

active control;(b) controlled spring can change the natural frequency of the isolator to 

enlarge the dynamic stiffness to obtain the control objective; (c) for external excitation 

load choosing the proper delayed controller to decrease the transitional time and 

increase the response speed; (d) For external harmonic load, the controller effect on 

vibration isolation in the resonant region. Thus, active time-delayed control to expand 

the isolation band without adjusting the structure.  

 

Hình 2.16. Vibration isolator with time delayed active control strategy [21] 

A concept of sandwich plate-type elastic metastructures is suggested by D. Cheng 

[22] shown in Fig. 2.17 in which the grid sandwich plate structure has excellent 

vibration isolation effectiveness characteristic. the geometrical parameters modulate 

the subwavelength flexural wave band-gap effectively. 
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Fig. 2.17 (a) Schematic diagram of local resonant sandwich plate; (b) The 

unit 

cell of the spring mass system; (c) Two degrees of freedom ‘spring-mass’ 

model of the plate-type elastic metamaterial. [22] 

An innovation bio-inspired toe-like structure was introduced by G. Yan et al. [23] in 

Fig.2.18 which was composed of two rods and a linear spring. The isolation 

effectiveness towards the low frequency was tested to verify. The isolation vibration 

range is broadened.  

 

Fig. 2.18 Design of toe-like vibration isolator for vibration isolation in vertical 

direction inspired by the toe. (a) single TLS for vibration isolation; (b) 

combination of multiple TLS [23] 
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Another bionic model of a variable stiffness vibration isolated joint 

based on human structure, the author of this paper suggested an isolator, which is 

composed by leaf spring and connecting rod by a universal joint, is suggested by R. 

Chen [24] illustrated in Fig. 2.19. This model has compact structure, the system 

stiffness is easy to adjust through regulating the parameters of leaf spring, this maybe 

vary application in practice. 

 

Fig. 2.19. Bionic model of a variable stiffness vibration isolated joint [24] 

A geometric anti-spring isolator as in Fig. 2.20 is investigated by L. Yan et al. [25] 

which consists of several quasi-trapezoidal blade spring which are built flat and bent 

under the load. The numerical and experimental results show that the effective isolation 

performance, the relation between changing the payload and vibration isolation 

performance. 

 

Fig. 2.20. The model of the GAS isolator. (a) Schematic diagram of the GAS 

isolator.[25] 
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Fig.2.21. Stewart vibration isolator [26] 

Besides, magnetic springs have been used to study the low frequency vibration 

isolator. For instance, a compact QZS Stewart isolator which can be applied widely to 

isolate vibration for 1-6 degrees of freedom systems has been studied to use. Y. Zheng 

et al. [26] improved the effectiveness of suspension as shown in Fig. 2.21 in which 

negative magnetic stiffness spring is connected to six trusses. The resonant frequency 

of the system can be reduced in 6 degrees of freedom, extending the low frequency but 

remaining the load bearing ability combining the merits of active vibration isolation 

and high static low dynamic stiffness method.  

Y. Zheng et al. [27] analyzed and experimented the negative stiffness magnetic 

spring consisting of a pair of coaxing ring permanent magnetics in parallel with the 

mechanical spring (hình 2.22) to reduce the resonance frequency and achieve the 

desired isolation effectiveness. The experimental result conformed the resonance 

frequency of the isolator which can be reduced to 5.8 Hz.  
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Fig. 2.22. Isolated mode proposed by Y. Zheng et al. [27]   

 Based on Maxwell normal stress, F. Zhang et al. [28] designed and validated 

experimented an innovative magnetic negative stiffness isolation system for enhancing 

isolation effectiveness in the low frequency range which is presented in Fig. 2.23. 

 

Fig. 2.23. Configuration of MNSI based on Maxwell magnetic normal stress. (a) 

Cross-section view of isolator; (b) Configuration of excitation mechanism.[28] 

 

Fig. 2.24. Configuration of isolator designed by [29] 
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For purpose of the decreasing of the peak frequency and expanding of the isolation 

frequency towards the low frequency band, an alternative model of QZS isolator as 

shown in Fig. 2.24 in which the magnetic spring is with combined  rubber membrane is 

proposed by Q. Li et al. [29]. Besides, a mount design of the low frequency multi-

direction isolator is presented by G. Dong et al. [30] which is constructed by three ring 

magnets magnetized axially shown in Fig.2.25. The isolation range was expanded. The 

stiffness of the system may be decreased until zero in two horizontal directions. This a 

one of the low frequency multi- direction vibration isolators.  

 

Fig. 2.25. Schematic diagram of the multi-direction isolator. (a) Static equilibrium 

position; (b) the base excitations applied to the isolator; (c) mechanical model [30] 

A new kind of QZS system as in Fig. 2.26 including magnetic springs and cables 

was studied by C. Liu et al. [31]. This model, which includes two magnetic springs 

having radial magnetization and eight cables, is designed to improve the vibration 

isolation ability in different direction in horizontal plane. The stiffness of the magnetic, 

which is prototyped experimentally, can be regulated to improve the range of zero 

stiffness region, the vibration effectiveness reaches lower than the excitation. 
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Fig.2.26. Schematic diagram the conceptual model of IP-QZS vibration isolator [31] 

 

Fig. 2.27. Design of the SMCM with the supercells connected vertically [32] 

 

A stiffness-mass-coding metamaterial vibration isolation model was designed by C. 

Li et al. [32] indicated in Fig.2.27 which is composed of four local resonators. This 

isolator may be integrated with the controller, which makes it become an active 

isolator, is widely practical application. Through regulating the distance between two 

magnets the nonlinear magnetic force is adjusted, ang a new concept on the low-

frequency broadband tunability is provided in this work. 
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Besides, S. Yuan et al. [33] developed an isolator containing three coils with a ring 

magnet (hình 2.28) by controlling the current to the coils to improve the isolation 

performance under violent vibration conditions. The experimental results proved that 

this isolator is suitable for large excitation and can be tuned online. Because of 

stiffness, the isolation performance of the magnetic spring isolator can be improved. 

But the drawback of magnetic spring is that only when it has low load. Accordingly, 

application limitation of the magnetic spring is inevitable. 

 

Fig. 2.28. Configuration of isolator designed by [33] 

Although present QZS vibration isolation models can offer premising effectiveness 

for low frequency vibration isolation, there exist disadvantages such as: QZS vibration 

isolation model only offers the best effectiveness under an optimal isolated load. To 

remain the isolated effectiveness, the dynamic stiffness of the model must be adjusted 

properly as there is an increase or reduction in the weight of the isolated object 

requires, indicating that the restoring properties of springs must be regulated even the 
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elastic element must be replaced. This requirement is very difficult for QZS vibration 

isolation models using mechanical or permanent magnetic springs.  

Another type of elastic element, which can overcome issues mentioned above, is air 

spring due to easy control of the spring coefficient and high bearing capacity. Thus, in 

recent years, this type has been applied widely in vehicle suspension field [34-38], 

vibration isolation platform [39-41], etc. Researching the characteristic of rubber air 

spring has been motivated by many scholars, engineers [42-44]. 

 

Fig. 2.29. Schematics of the NSS on a vehicle.[45] 

Particularly, a set of two Pneumatic Linear Actuators (PLAs) [45] in Fig. 2.29  

added to a seat supported by a pneumatic spring which makes the seat more 

comfortable. In this work shows the advantages of using pneumatic spring in a driver 

seat by adjusting the pressure of the pneumatic spring. 

Therefore, it is interesting to combine the mechanical and pneumatic system to 

develop a quasi-zero stiffness vibration isolation model which can the isolation region 

toward low frequency. Adjusting the dynamic stiffness of the proposed model can be 

carried out simply and easily to remain the isolation effectiveness as the isolated load is 

changed simultaneously, the load bearing capacity of the proposed model is still 

ensured. 
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Nguyen et al. [46] introduces a new vibration isolator as in Fig.2.30 which is 

composed by two air bellow elements in horizontal direction in perpendicular to a 

sleeve -type air spring element. This system can create a high static and low dynamic 

stiffness even achieve zero through controlling the pressure in the air spring. This work 

can improve the vehicle seat because the decreasing in seat displacement and the 

vibration isolation performance under low excitation frequency is excellent. 

 

Fig. 2.30. (a) Model of ASVIS with NSS, (b) schematic diagram of ASVIS at the 

static equilibration position [46] 

 

Fig. 2.31. Structure of magnetic-air hybrid quasi-zero stiffness vibration isolation 

system [47] 
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In previous studies, the QZS isolator is usually constructed by the two springs or 

magnet spring. In this study, a magnetic-air hybrid quasi-zero stiffness vibration 

isolation system is proposed by Y. Jiang et al. [4], which is composed by an air spring 

in the vertical direction in parallel with an electromagnetic springs in the horizontal 

direction, indicated in Fig.2.31. This magnetic-air hybrid QZS vibration isolation 

system obtains both the isolation performance and meet with variable support load. 

 

Fig. 2.32. The structure sketch of passive isolator using PNSP [48] 

Another isolation system, which is the composing of two opposite mechanisms, is 

the study of M. Wang et al. by using magnetic spring [48] plotted in Fig.2.32. The 

mentioned structure is verified the validity as well as superiority through the 

experiment. This system also solves the problem about both the low stiffness and load 

bearing ability. 

Y. Zhao et al. [49] proposed an electromagnetic active-negative-stiffness generator 

which is illustrated in Fig. 2.33. In which the micro-vibration of an optical platform 

was examined by nano-resolution laser interference sensors. The experimental results 

proved the meaningful effectiveness of the low-frequency vibration isolator of the 

proposed model which is constructed by precision electromagnetic actuators 

counteracted the positive pneumatic. 
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Fig. 2.33. Scheme of electromagnetic active-negative stiffness generator (EANSG) 

[49] 

SUMMARY OF CHAPTER 2  

The advantage of the vibration isolation model using air springs is to possess the load 

supporting capacity and low static deformation. Specially, the stiffness of the spring is 

able to be adjusted. Nevertheless, the drawback of the air springs is its hysteresis and 

complex dynamic response. Hence, when it is applied for the quasi-zero stiffness 

vibration isolation system (QSVIS) causing the dynamic response complex. It brings 

the same results for applying into the QSVIS resulted in the dynamic response of the 

system to be more complicated including the bifurcation and frequency jump 

phenomena. This I sone of the significant effects on the isolation performance which 

has not been discovered completely in previous studies. 

Taking the strong points of the quasi-zero stiffness vibration isolation method as 

well as air springs, this thesis will design an innovative quasi-zero stiffness vibration 

isolation system using air springs. The dynamic response of the system will be 

analyzed comprehensively. Since then, a method for designing a vibration isolation 

will be proposed to meet the practical application. 
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CHAPTER 3 

 FUNDAMENTAL OF RELATIVE THEORIES 

 

In order to realize contents in this thesis, some fundamental theories have been used 

to discover the dynamic response as well as vibration transmissibility of the system 

such as thermodynamics, frictional model, viscoelastic model. Additionally, the 

mathematical methods including Normal form, Multi-scale, Runge-kutta, Poincare 

section along with Genetic Algorithm are employed to find solutions for the proposed 

system. 

3.1. Air spring: 

3.1.1 Introduction 

A system which uses compressed air as its elastic element is considered as an air 

spring. It can be classified into two categories including rubber bellow and pneumatic 

cylinder.  The load bearing capacity of an air spring depends on the effective area and 

internal air pressure. The air spring offers a lot of superior merits such as low static 

deformation, large and various load supporting ability, adjustable elasticity thorough 

changing the pressure within spring, meaning that the spring rate is variable and 

controllable. Additionally, another advantage is that the energy-storage capacity of the 

air spring is greater than that of mechanical one. Generally, air springs have not only 

low resonance frequencies and static deformation but also smaller overall length than 

the mechanical spring. Especially, along with elastic function, the air spring can work 

as a damper. That is the reason why air spring systems gain more and more popularity 

in practice. Hence, in order to broaden the isolation region toward low frequency, 

studying the use of the air spring for vibration isolation systems is necessary.  
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3.1.2 General structure of rubber bellow 

 

Fig.3.1 Configuration of a rubber air spring: (a) Reversible sleeve, (b) Convoluted [50] 

There are basic types of rubber bellow such as reversible sleeve, convoluted as 

shown in Fig. 3.1. It comprises some following parts:  

- Mounting stud (1), which is a part, is fixed on the bead plate used to connect 

the air spring to the suspension. 

- Combination stud (2) is to combine the mounting stud and the air fitting. 

- Blind nut (3) which provides an alternative mounting system to the stud is a 

fixed part of the bead plate. Air fitting hole which is tapped for air to enter the 

part. 

- Air fitting hole (4) is a hole allows air entrancing which is tapped. 

- Bead plate (5) which is made of steel for corrosion resistance closes the top end 

of the flexible member. It is permanently crimped on to the bellows to form an 

airtight assembly. It is assembled attachment to the vehicle structure through 

studs, blind nuts, brackets, or pins. 

1 2

5

6

7

8

9

4 3

5

6

10

5
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- Rubber bellows (6) is the main part of an air spring.  Its main function is to 

contain a column of compressed air.  It is constructed from layers including the 

inner, middle and outer layer as shown in Fig. 3.2. 

o Inner liner is made of a rubber. 

o First ply is a layer of fabric-reinforced rubber with the cords at a specific 

bias angle. 

o Second ply is a second layer of fabric reinforced rubber with the same 

bias angle which is laid opposite of the first ply. 

o Outer cover is a rubber outer cover. 

- Internal bumper (7) is an internal device to prevent damage to the air spring 

during times when there is no air in the system. 

- Piston (8) which may be made of aluminum, steel, or engineered composites. 

The pistons with the thread holes are used to ensure the assembly to the 

mounting surface. 

- Piston bolt which (9) attached the piston to the bellows assembly 

- Girdle hoop (optional) (10) is a ring between the convolutions of the 

convoluted-type air spring. 

 

Fig. 3.2 Structure of the rubber bellow 
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3.2. Mathematical model of the compressed air 

Supposing a working chamber as shown in Fig. 3.3, according to the first law of 

thermodynamics [51], the energy balance in the working chamber volume is expressed 

by Eq. (3.1) 

 

Fig. 3.3. Schematic diagram of the pneumatic working chamber 

ch in out aedE dE dE dE Q                     (3.1) 

in which dEin and dEout are the air energies of input and output lines, dEch is the air 

energy in spring, dEae is the work of air expansion and Q is the heat exchange with 

environment. These energies are given as following:  

 

in p in in

out p out

ch v v

ae

dE C T G

dE C T G

dE C m dT C Tdm

dE PdV

Q a T





 



 

                (3.2) 

where  

Cp and Cv are specific heat capacities at constant pressure and volume, respectively, 

Tin is the temperature of air at the inlet, 

mair, P, V and T are the mass, pressure, volume and temperature of the air in the 

pneumatic working chamber, 

Gin and Gout are mass low rates at inlet and outlet, 

m; P; V; T

Pin, Tin, 

dEin

Pout, Tout, 

dEout
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α is the heat transfer coefficient, 

a is the heat transfer surface area, 

T is the temperature difference between the air inside working chamber and 

environment.  

It is assumed that the heat transfer between the air inside working chamber of the air 

spring and environment is ignored and the air is considered as ideal gas, we have: 

  
  



v in in out

v

air

P
C Tdm nT G nT G dV

C

PV mR T

               (3.3) 

herein: n=Cp/Cv is the ratio of specific heat capacity,  

  Rair is the gas constant (Rair=287J/kg.K). 

3.3. Frictional model of pneumatic cylinder and rubber material 

3.3.1. Frictional model of pneumatic cylinder 

The friction is generated from relative motion between rod and cylinder. According 

to [52] the friction model (Ff) is a combination between Coulomb friction, viscous 

friction and static friction. The characteristic of this model is presented by a Stribeck 

curve in both the extending and retracting strokes of a pneumatic cylinder as shown in 

Fig. 3.4. 
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Fig. 3.4. Stribeck curve 

The frictional force model is calculated as below: 

( / )
( ) 

   
ns

r sv v

f c st c rF F F F e v                   (3.4) 

in which  

Fc is Coulomb friction force,  

Fst is the static friction force, 

vs is the Stribeck velocity,  

vr is the relative velocity between two contacting surfaces,  

 is the viscous friction coefficient, 

 ns is the exponent of the Stribeck curve.  

3.3.2. Frictional model of rubber material   

The friction is generated between filled and cord fabric. The frictional model of the 

rubber material is expressed through Berg’s rubber model [53] which enables a good fit 

to the hysteresis loop as the inflated bellow is compressed. The friction force depends 

on the relationship between the displacement x and reference displacement (xref), given 

by: 

Fr

vvs-vs

Fs

-Fs

Fc

-Fc
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            (3.5)  

in which Fref is the reference force along with the displacement xref called the reference 

state (xref, Fref). Ffrimax is the maximum friction force. x2 is the displacement at which 

the friction force is developed to the value of Ffrimax/2 when it starts from x=0, Ffri=0. 

An auxiliary quantity a is equal to Ffri/ Ffrimax ranging from -1 to 1. In the case, the air 

spring is excited by a harmonic signal with the amplitude xo and frequency , the 

steady-state amplitude of the frictional force is expressed as below:  

   max 2 2

2 2 2 2

2

6 / 2
2

fri

frio o o o o

F
F x x x x x x x x

x
                   (3.6) 

As shown in Fig. 3.5 Kmax is the maximum tangent stiffness as the displacement is 

close to xo. The dot lines are representative for the linear stiffness Ke, the vertical 

distance between these lines approximately equals 2Ffrimax. The displacement x2 is 

obtained as below: 

  
max

2

max

                          


fri

e

F
x

K K
                (3.7) 

 
Fig. 3.5 Friction force with respect to displacement 
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3.4. Viscoelastic model of the rubber material 

The viscoelasticity of the rubber bellow is one of the properties causing the 

hysteresis phenomenon in the dynamic behavior of the rubber air spring. Fraction 

Kelvin-Voigt model is one of the powerful methods for describing the characteristic of 

the rubber-like parts [54]. It consists of the spring and springpot in parallel as shown in 

Fig. 3.6 where Kvie is the stiffness and b, 0<c<1 are the springpot parameters. The 

motion equation of the fractional Kelvin-Voigt model is obtained as following: 

( ) ( ) ( )  c

ve vie tF t K x t bD x t                  (3.8) 

in which ( )c

tD x t is the fractional derivation of the displacement x(t) versus the time. By 

applying the definition of Grunwald fraction derivative [55], we have: 

 1
0

0

( ) lim ( )
N

c c

t i
t

i

D x t t B f t i t


 



 
    

 
                                                                           (3.9) 

where  1

( ) 1
1

( ) ( 1)

i

i i

c i c c i
B B

i c i i


      
    

    
and N is integer 

    

Fig. 3.6. Diagram of Fraction Kelvin-Voigt model 

3.5. Normal form method  

Normal Form method [56] is used to find the fundamental solution of the dynamic 

equation, the equation of motion may be written as following: 

b
c

kvie
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( , , )  v vv v v v r P r                (3.10) 

with x is the n x 1 vector,   the n x n matrix, n is the degree of freedom in the system. 

Pv is the n x 2 forcing amplitude matrix, r= ,
T

p mr r  is a forcing vector with i t

pr e   and 

i t

pr e  , where Ω is the forcing frequency. ( , , )v v v r is a n x 1 vector of nonlinear 

terms given by: 

2 3

1 2 3( , , ) n ( , , ) n ( , , ) n ( , , ) ...     v v v r v v r v v r v v r           (3.11) 

In which:  is a small parameter, the near-identity transform can be applied follow: 

( , , ) v u h u u r  where 2

1 2( , , ) h ( , , ) ( , , ) ....   h u u r u u r h u u r          (3.12) 

The post-transformed equation of motion: 

(u, , )  u uu u u r P r                (3.13) 

herein: 2 3

1 1 3(u, , ) (u, , ) (u, , ) (u, , ) ...     u u u uu r n u r n u r n u r           (3.14) 

Combining Eq. (3.8) into Eq. (3.11), then the balance of 
0
 and 

1
 term, we have: 

 

0

2
1

1 1 1 12

:   

:  (u, , ) (u, , ) (u, , ) (u, , )







   

u v

u u

P r P r

d
n u r h u r h u r n u r

dt

          (3.15) 

The state vector u can be split into components 

p m
u u u                   (3.16) 

With ;
2 2

n n

rn rn

i i
i t i tn n

np mp

U e U e
u e u e

 

 

 


   
    
   
   

  

The vector n1, h1, nu1 are expressed as below: 
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*
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( , , ) [ ] ( , , r),

( , , ) [b] ( , , r),
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





p m

p m

u p m

n u u r f u u u

h u u r u u u

n u u r a u u u

               (3.17) 

where u
*
 is a column vector (of size L x 1) containing all the combinations of up, um 

and r 

From Eq. (3.17), Eq. (3.15) can be rewritten as following: 

 
2

* * * *

2
[ ] ( , , r) ( , , r) ( , , r) [ ] ( , , r)

p m p m p m p m

d
a u u u b u u u u u u f u u u

dt
              (3.18) 

where:       

in which *u is a column vector having size of L x 1, * *, ,n h and *

un  are the n x L 

containing coefficient terms. The th element in u
*
 is expressed as following:   

 *

1

p pkm mk

n
m sm s

p m pk mk
k

u r r u u


                  (3.19) 

where mp and mm are power indicates.  

The time derivative of the th element of vector u
*
 is obtained as: 

         
* * * *

*

1

n

p m rn np rn nm
ip m np nm

u u u ud
u i r i r i u i u

dt r r u u
 



    
        

     
  (3.20) 

The second derivative of u
*
 is: 

  
2

* *

2
( , , r) ( , , r)
p m p m

d
u u u u u u

dt
                 (3.21) 

herein:  is a diagonal matrix of size n x n determined as following: 
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   i i
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n

p m p m rn
i

i m m s s 


 
      

 
          (3.22) 

From this information, the Eq. (3.16) is rewritten as following: 

  * *[ ] [b] [ ] ( , , r) [ ] ( , , r)
p m p m

a b u u u f u u u              (3.23) 

Considering non-zero *( , , r)
p m

u u u , letting: 

[ ] [ ] [ ] [ ] [ ]b f a b b                   (3.24) 

with the ( , )n  element in matrix [ ]b is given by: 

    
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, i i ,
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n p m p m rn rn n
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   

         (3.25) 

3.6. Multi scale method [56] 

Considering an equation as below 

 ( , , ) 0x f x x r                  (3.26) 

By introducing a new independent variable as following: 

 n

n
T t   

where t denotes the time in second,  is a small constant  

It is assumed that the solution of Eq. (3.26) can be represented by an expansion 

having the form: 

2 3

1 0 1 2 2 0 1 2 3 0 1 2( , ) ( , , ,...) ( , , ,...)  ( , , ,...) ...       x t x T T T x T T T x T T T            (3.27) 

The time derivative becomes expansion in terms of the partial derivatives versus the 

Tn as following: 
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        (3.28)  

where /n nD T   .  

3.7. Runge-kutta method [57] 

The Runge-Kutta methods is an important family of predictor-corrector methods for 

approximation of solutions of ordinary differential equations (ODEs) which were 

developed by German mathematicians C. Runge (1856–1927) and M. W. Kutta (1867–

1944) 

We shall not derive these methods in fullness but shall give a flavor of how this may 

be done. In order to solve the system 

(t, y),
dy

f
dt

                  (3.29) 

We use Taylor series and as such we write the scheme as 

1 1 2n ny y ak bk                    (3.30) 

where 

1

2 1

( , ),

( , ).

n n

n n

k tf t y

k tf t t y k 

 

    
 

In order to derive an equation of this form we start with the Taylor series for 

1 ( )ny y t t                  (3.31) 

2
'

1 ( , ) ( , ) ...,
2

n n n n n n

t
y y tf t y f t y


                 (3.32) 
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where the prime denotes a derivative with respect to t. Using the chain rule we can 

write 

,
df f f y

dt t y t

  
 
  

                (3.33) 

but using the original equation 

.

( )y f  

so that 

2

1 ( , ) ( )....
2

n n n n

t f f
y y a tf t y f

t y


  
    

 
             (3.34) 

Let us now substitute the forms for k1 and k2 into Equation (3.32), so that 

1 ( , ) ( , ( , )).n n n n n n n ny y a tf t y b tf t t y tf t y                      (3.35) 

We now need to expand the last term in this equation, so that 

,

( , ( , )) ( , ) .

n n

n n n n n n

t y

f
f t t y tf t y f t y t

t
  


      


           (3.36) 

Using this number of points there is no visible difference between the numerical and 

the exact solution. We can investigate the effect of altering the value of α. This method 

can be extended to higher orders: for instance, the fourth-order scheme is given by 

1 1 2 3 4

1
( 2 2 )

6
n ny y k k k k                 (3.37) 

where 
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3.8. Poincaré section [58] 

The cross-section  that it cuts each phase path transversely in some region of the 

phase diagram is called a Poincaré section of the phase diagram as shown in Fig. 3.7. 

Consider Ao (xo,yo) on the section , following the phase path through Ao in its 

direction of flow, it will next cut  in the same direction at A1(x1,y1). This point is 

called first return or Poincaré map of the point Ao. Similarly, A2(x2, y2) is the first 

return point of A1(x1, y1). This process can be presented as following: 

( ', ') ( , )x y p x y                 (3.38) 

where (x’,y’) is the point of first return of the path from (x,y). For successive, first 

returns starting from Ao is expressed as below: 

( , ) ( , )n

n n o ox y p x y                 (3.39) 

It is worth noting that the time lapse between two successive intersections of a 

trajectory with a chosen Poincaré section is not a constant.  

 

Fig. 3.7. Poincaré section of the phase diagram 
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The Poincaré map is used to analyze the dynamic response of the nonlinear system 

including bifurcation, resonance, etc. For a steady-state vibration, Poincaré map is 

formed by sampling the cycle one per forcing period. For instance, if an expected 

solution having period T, then we plot on the x,y plane a sequence of points determined 

at time T, 2T, 3T, etc. Along the phase paths starting from various states. Result is to 

obtain the series of data points (xo,yo), (x1,y1), (x2, y2), (x3, y3)…for corresponding 

sampling times as shown in Fig. 3.8. 

 

Fig. 3.8 Poincaré map showing the continuous orbit in x, y, t space 

3.9. Brief introduction of Genetic Algorithm [59] 

The genetic algorithm (GA) involves three main operations: reproduction, crossover 

and mutation. The GA creates a sequence of chromosomes that correspond to 

numerical values of a particular variable in order to derive a solution to a near optimal 

problem. Each chromosome represents a potential solution to the problem in question. 

Selection or reproduction is the process by which chromosomes in a population contain 

a better fitness value and thus have a greater probability of reproducing. The roulette 

wheel selection scheme is used in this thesis. The selected chromosomes that are 

encoded with better fitness values are chosen for recombination to yield off-spring for 

successive generations. Subsequently, natural evolution of the population is continued 

until a desired termination. This results in a final generation composed of highly fitted 
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chromosomes, which represent the optimal solution to the search problem. Fig. 3.9 

shows the procedure of GA optimization 

 

Fig. 3.9. Flow chart of the genetic algorithm 
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SUMMARY OF CHAPTER 3 

This chapter provided brief outlook on theories relating the contents of thesis 

including air spring, thermodynamic, friction, elastic, numerical methods…etc.  

Following these relative theories, the dynamic characteristic of the proposed model 

will be discovered in next chapters. In addition, the static analysis as well as stability of 

solution will be also studied.  
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CHAPTER 4 

QUASI-ZERO STIFFNESS VIBRATION ISOLATOR USING 

RUBBER AIR SPRINGS 

 

This chapter will focus on propose and analyze dynamic response as well as 

vibration transmissibility of the quasi-zero stiffness adaptive vibration isolation model 

(QSAVIM) using rubber air springs. This proposed model is named “QSAVIM using 

RAS” in which the restoring force is generated by rubber air springs. First of all, the 

restoring model of the RAS is analyzed and identified experimentally. The static and 

dynamic analyses are then performed to find the stiffness model and relation between 

the amplitude and frequency as well as the transmissibility for vibrated base. 

Especially, effects of configurative parameters on stiffness curve and equilibrium 

position are analyzed and the frequency jump and bifurcation phenomena were 

considered. Finally, an experimental apparatus of the QSAVIM using RAS was 

established to verify the isolated effectiveness and compared with the equivalent 

traditional vibration isolation model (ETVIM) which has the same load bearing ability 

and static deformation as the QSAVIM. The content of this chapter is organized as 

follows. Section 4.1 displays the mechanical model of the proposed isolator. Section 

4.2 shows the restoring model of a RAS. Next, the static analysis of the isolator is 

presented in section 4.3. Next, the dynamics analysis is indicated in section 4.4. Then, 

section 4.5 presents the effects of the configurative parameters on vibration 

transmissibility curve. Section 4.6 reveals the complex dynamic analysis. Section 4.7 

exhibits the design procedure for obtaining quasi-zero stiffness isolator. Finally, the 

experimental apparatus and result were demonstrated in section 4.8. 
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4.1. Mechanical model of proposed isolator 

The prototype of the QSAVIM has been designed comprises two mechanisms as 

shown in Fig. 4.1. One includes four rollers 3, four wedges 8 with the angular of α and 

two rubber air springs 1. The other comprises four semicircular cams 6, four rollers 4 

and two rubber air springs 2. The former which is above with the positive stiffness is 

called the load bearing mechanism (LBM), meaning that the isolated object is only 

supported by this mechanism. The latter is the stiffness corrected mechanism (SCM) 

with the negative stiffness is below. This model is operated based on the opposite 

stiffness of two mechanisms, indicating that the proposed model can achieve the 

desired low stiffness or even the quasi-zero stiffness. It is noted that, the wedge and 

semicircular cam are fixed on the table leg 7 and the isolated object includes four 

wedges, four legs, load plate and isolated load 14. During the operation, the rollers 3 

and 4 always roll without sliding on the surface of the wedge and cam simultaneously, 

the centers of these rollers only move in the horizontal direction through the sliding-

blocks 5 and guide-bar 11 fixed on the base frame. In order to ignore the effect of the 

friction, a linear bushing is installed between the sliding-block 5 and guide-bar 11. In 

addition, the load plate along with the legs only realizes the vertical motion by 

introducing the sliding bushings 9 and guide-bar 10.  

A main merit of the proposed model is that the stiffness of both mechanisms 

including LBM and SCM can be adjusted through the control of the pressure in the 

rubber air springs. Hence, the system can adapt to obtain the high-static-low-dynamic 

stiffness at desired static equilibrium position when there is a change of the weight of 

the isolated object, meaning that the QSAVIM can achieve the low resonant frequency 

but remain the load bearing capacity.  

After describing the configuration of the proposed isolation model, next sections 

will have realized works including static and dynamic analyses of the QSAVIM. From 

these results, the procedure for designing the QSAVIM with quasi-zero stiffness is 
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offered. As introduced, the elastic element of this isolation model is the rubber air 

spring hence, one of the first works will be carried out to establish the restoring force 

model generated by the RAS.  

    
Fig. 4.1.  Prototype of the QSAVIM, herein: 1 and 2- rubber air springs, 3 and 4- 

rollers; 5-sliding blocks; 6- semicircular cams; 7-table legs; 8-wedges; 9-sliding 

bushing; 10 and 11- guide-bar; 12- base frame and 13-load plate, 14-isolated load 

(Published by Vo et al. “Adaptive pneumatic vibration isolation platform”, Mechanical 

Systems and Signal processing) 
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4.2. Restoring model of a RAS. 

A RAS composes of the cover plate, bellow and piston as shown in Fig. 4.2. The 

bellow is made of rubber with the fabric reinforced rubber wall. The piston and cover 

plate are made of plastic or metal, aiming to seal the ends of the rubber bellow. 

Additionally, the rubber bellow can also roll on the surface of the piston. During the 

operation, the effective volume and area of the RAS are changed as a function with 

respect to the displacement due to the piston shape and the variable contact area 

between the cover plate and inflated bellow.  

 

Fig. 4.2. The physical model of a RAS 

 

Fig. 4.3. Basic model of the rubber air spring force 

The resultant force generated by the rubber air spring is contributed by the 

thermodynamic force of the compressed air, the frictional force contributed by the 

relative motion between the rubber and fabric as well as rubber bellow and the surface 

of the piston, and the viscoelastic force of the rubber material. Through the principle of 
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superposition (Published by Vo et al. “Analysis model of restoring force of a rubber air 

spring,” Journal of Vibroengineering), the total force (Fras) of the rubber air spring is 

shown in Fig. 4.3, meaning that it is expressed as following: 

fri vie  ras sF F F F                   (4.1) 

where Fs, Ffri and Fvie are forces generated by the compressed air, friction and 

viscoelastic, respectively.  

4.2.1 Compressed air force 

Assuming that the heat exchange in the rubber bellow as well as air leakage is 

ignored, according to the thermodynamic theories and ideal air state equation, the 

mathematical model of the pressure (P) in the air spring is determined as follows: 

e

e

d Vd P n P

d x V d x
                              (4.2) 

where, Ve is the effective volume of the inflated bellow, n is the polytropic exponent 

which depends on the thermodynamic state of the compressed air including n=1 for the 

isothermal state, n=1.4 for the adiabatic state and 1<n<1.4 for the polytropic process.  

From Eq. (4.2), the pressure inside the inflated bellow at an arbitrary compressed 

position is obtained as following: 

n

n eo
e o

e

V
PV P

V

 
  

 
                  (4.3) 

where Po and Veo are the initial pressure and effective volume 

The compressed air force is determined as following: 

 air e atmF A P P                    (4.4) 

in which Patm is the atmosphere pressure, Ae is the effective area of the air spring.   
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The stiffness (Kair) of compressed air is defined by differentiating Eq. (4.4) with 

respect to the displacement x, we have: 

     air e e e
air atm

e

dF nPA dV dA
K P P

dx V dx dx
               (4.5) 

The stiffness model given in Eq. (4.5) can be linearized around the working height 

hwh as following:  

( )
    wh wh wh

air wh atm wh
wh

nP A V
K P P A

V
               (4.6) 

in which the volume, effective area and pressure at the working height are denoted by 

Vwh, Awh and Pwh. Awh, Vwh are the change rate of the effective area and volume. 

4.2.2. Frictional force 

As presented in chapter 3, the frictional force is generated by filled rubber 

components and relative motion between the rubber bellow and the surface of the 

piston. The friction is one of the causes creating the hysteresis behavior of the restoring 

force of a rubber air spring. According to Berg’s model, the model of frictional 

hysteresis is presented as below: 

     
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                (4.7)  

where the displacement x2 is given in Eq. (3.7) in which Ke is replaced by Kair. Hence, 

it becomes: max
2

max




fri

air

F
x

K K
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4.2.3. Viscoelastic force 

As mentioned in chapter 3, the fractional Kelvin-Voigt’s model is used to describe 

the hysteresis behavior due to the viscoelasticity of the rubber bellow. The motion 

equation of the fractional Kelvin-Voigt ‘s model (Fvie) is given as following: 

( ) ( ) ( )  c
vie vie tF t K x t bD x t                  (4.8) 

Now, supposing an excitation is given by x=xosin(t), according to [54], the 

fractional derivation with respect to the displacement (x) is expressed as following: 

 ( ) sin( / 2) sin( )cos( / 2) cos( )sin( / 2)          c c c
t o oD x t x t c x t c t c    (4.9) 

Using x=xosin(t), Eq. (4.9) can be rearranged, that: 

( ) sin( / 2)cos( ) cos( / 2)     c c c
t oD x t x c t c x                (4.10) 

Substituting Eq. (4.10) into Eq. (4.8), the motion equation of the fractional Kelvin-

Voigt’s model becomes:  

 ( ) cos( / 2 ) s in ( / 2 ) co s( )      c c
vie v ie oF t K b c x bx c t        (4.11) 

From x=xosin(t) and (4.11), we obtain the functions of sine and cosine as below: 

 

sin( )

( ) cos( / 2)
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   

o

c
vie vie

c
o

x
t

x

F t K b c x
t

bx c

           (4.12)
 

Through sin2(t)+cos2(t)=1, the hysteresis loop of the fraction Kelvin-Voigt’s 

model is expressed as below: 

  2 2( ) cos( / 2)
1

sin( / 2)

 

 

    
        

c
vie vie

c
o o

F t K b c x x

bx c x
           (4.13) 
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For a given excited signal with the frequency (), we obtain a set of data as 

following: 

At time t1 having x(t1)=xo corresponding to Fvie (t1)= Fvie1 

At time t2 having x(t2)=0 corresponding to Fvie (t2)= Fvie2 

Thus, Eq. (4.13) becomes: 

1

0

2

( )
cos( / 2)

( )
sin( / 2)

 

 

  
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
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o

F t
K b c

x

F t
b c

x

                 (4.14) 

It is clear that the parameters of the fractional Kelvin-Voigt’s model such as Kvie, b 

and c are unknown whilst Fvie1 and Fvie2 and xo are physical parameters. Indeed, with a 

given excited frequency and amplitude, the values of forces Fvie1 and Fvie2 

corresponding to x(t1)=xo and x(t2)=0 are measured experimentally, respectively. 

Hence, each excited signal having the amplitude xio and frequency i (i=1,3,…,m), 

if the values of Ke, b and c are determined properly, meaning: 

 1
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( )
sin( / 2) 0

 

 

   

  


cvie i
vie i

i

cvie i
o i

io

F t
K b c

x

F t
bx c

x

               (4.15) 

From this analysis, the optimal values of Kvie, b, and c will be identified through 

minimizing the following cost function: 

 
2 2

1 2

1 0
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
m

c cvie i vie i
vie i i

i i io

F t F t
J K b c b c

x x
    (4.16) 

where m is the number of the harmonically excited signal, Fvie1i, Fvie2i are the 

viscoelastic forces at the time having the corresponding displacement equaling 0 and 

xio. Then, GA is shown in Fig. 3.9, which is employed to determine optimal values of 
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the viscoelastic model given in Eq. (4.8). This work aims to minimize the cost function 

expressed by Eq. (4.16).  

4.2.4. Test rig  

 

Fig. 4.4. Experimental setup: (a) Photograph of test rig; (b) Schematic of test-rig 

In order to realize the simulated and experimental verification of the proposed 

isolation model, the restoring model of RAS must be known. Therefore, one of the first 

works is that a commercial rubber air spring with model number 1S3-013 having the 

physical parameters listed in table 4.1 manufactured by Guangzhou Guomat Air spring 

Co., Ltd is chosen to be identified.  
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Table 4.1. The physical parameters of the air spring 

Parameter Value 

Extended Height 91.44 mm 

Bumper Height 38.1 mm 

Upper Plate 81.28 mm 

Lower Plate OD 60.96 mm 

The test-rig is set up as shown in Fig. 4.4 in which the rubber bellow is inflated by 

the air reservoir through the switch valve whilst the internal pressure of the bellow is 

regulated by the pressure regulator. One end of the air spring is excited by the 

pneumatic cylinder controlled by the proportional valve while the other is fixed to a 

support plate where the force can be measured through a load cell with model “HPS”.  

Besides, the pressure inside the rubber bellow is measured by the pressure transducer-

EDS.305. A computer in which an NI-card 6221 worked as an A/D converter is 

installed for communicating between the computer and sensors, is used to monitor as 

well as collect the data from sensors. 

4.2.5. Model identification and verification results 

First of all, the effective area and volume will have been predicted, before 

experimental data collection, the rubber bellow is inflated by the air reservoir to value 

of 1.5 bar. Then, the free end of the rubber air spring is excited by sinusoidal 

displacements having amplitude of 15 mm and very low frequency of 0.005Hz, aiming 

to ignore the effects of viscoelasticity of material. The real force and internal pressure 

are collected and applying Eq. (4.4) obtains the effective area curve versus the 

displacement as shown by the dashed line in Fig.4.5 (a). Simultaneously, the effective 

volume of the rubber air spring is predicted through Eq. (4.3) in which the initial 

volume of the bellow is 0.243 liter is provided by the company and the polytropic 

exponent (n) is set at value of 1 due to the low velocity of the cylinder. The result is to 
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attain the predictive curve of the effective volume depicted by the dashed line as shown 

in Fig. 4.5 (b). It is interesting to confirm that the predictive curve follows well the 

experimental data as well as data (marked by the filled squares) given by the company.  

 To simplify restoring force model analysis of the rubber air spring, the predicted 

effective area (Ae) and volume (Ve) are approximately expressed by polynomial 

functions as given in Eqs. (4.17) where the Least square method is employed to find 

the coefficients of the polynomial so that the error between fitting function and 

predicted result is the minimum. As observed in Fig. 4.5, the fitting curves are in a 

good agreement with the predicted data.  

 
 

2 3 4 3

2 3
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

  

e

e

A x x x x

V x x
        (4.17) 

where x is the displacement of the end of the air spring in mm as shown in Fig. 4.4 (b), 

Ae and Ve are the effective area in m2 and effective volume in m3, respectively. 

 

Fig. 4.5 Fitting curve compared with the predicted results: (a) Effective area; (b) 

Effective volume (Annotation for line types is given on top-corner panel of figure) 
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Fig. 4.6 Comparing Berg’s model and experiment one 

Next, a displacement with amplitude of 10mm and frequency of 0.02Hz is applied 

on the free end of the rubber air spring to obtain the frictional hysteresis loop as shown 

in Fig. 4.6 (the detailed notion of the line types is presented in the left-top corner panel 

of the figure). It can be seen obviously that the sharp corners appear at minimum and 

maximum displacements of the hysteresis loop. By applying Berg’s model, the 

predicted curves of the frictional hysteresis loops are drawn by the solid line. It 

confirms that the Berg’s model offers (where Ffrimax=5.7N and x2=1.95mm) a good fit 

to the hysteresis loop due to the effects of friction.  

 

Fig. 4.7. Cost function J versus the iteration 
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Fig. 4.8. Force-displacement hysteresis loop compared the experiment and 

identification 

Next, the dynamic test with the frequencies of 0.1Hz, 0.2Hz, 0.5Hz, 1Hz, 1.5Hz, 

2Hz, 2.5Hz, 3Hz, 4Hz, 5Hz, 6Hz, 7Hz and the amplitude of 8mm are realized to 

predict the viscoelastic model. By utilizing GA with aiming to minimize the cost 

function expressed by Eq. (4.16). Clearly, after 20 iterations, the cost function 

converges to zero as shown in Fig. 4.7, these optimal values are obtained as following 

1.325, 0.909, and 0.859   vieK b c . Then, the predicted curve of the restoring 

force model is shown in Fig. 4.8. Obviously, the restoring force model of the rubber air 

spring and the experiment one match well together. The hysteresis loop generated by a 

displacement having small amplitude is enclosed in the loop for large amplitude and 

the sharp corners are appeared at the ends of the displacement. The more the reduction 

in amplitude is, the more the slope of the hysteresis curve is increased. Especially, 

comparing with Fig. 4.6, increasing the frequency will lead to reduce the effect of the 

hysteresis. 

4.3. Static analysis of the isolator  

In order to carry out the static analysis of the QSAVIM, based on the prototype 

shown in Fig. 4.1, the schematic diagram of the QSAVIM is drawn in Fig. 4.9 (a). 

Where, it is interesting to note that the load bearing mechanism is denoted in the 
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dashed-line rectangle meanwhile the stiffness correction mechanism exhibited in the 

dot-line rectangle. There are two especial states defined as following: 

+ One is the undeformed state presented by the dot line in Fig. 4.9 (b) at which both 

air springs are not compressed. 

+ The other is defined as the state at which the center of the semicircular cam 6 and 

the center of roller 4 are the same on horizontal line as plotted by the red dashed line as 

shown in Fig. 4.9 (a), which is also called desired static equilibrium position (DSEP). 

Considering the load plate moves vertically an amount of L from the undeformed 

state due to the force Fs as shown in Fig. 4.9 (b) whilst the base frame is fixed.  This 

leads to the displacement of the center of the semicircular cam compared with the 

DSEP being u, simultaneously, the horizontal displacement of centers of rollers 3 and 4 

are x1, x2, respectively.  

The relation of vertical and horizontal displacements is presented as follow: 

  

 
 

1

1

2 2 2 2
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2 2
2

tan  

tan       
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
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      

    

wh o

o o

wh o

x L

x H

R r H L R r H

x R r R r H

               (4.18) 

where the wedge angle is denoted by α and Ho is the static deformation of the system 

and it is defined as the vertical distance between the DSEP and the center of the 

semicircular cam. R and r are radii of the semicircular cam and roller, respectively. It is 

noted that the subscripts “1” and “2” are representative for the rubber air springs “1” 

and “2”. To guarantee the contact between the semicircular cam and roller, the static 

deformation Ho must satisfy following condition: 

   2 2
oH R r r                            (4.19) 
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Fig.4.9. (a) Schematic diagram of the QSAVIM including the load bearing mechanism 

denoted in the dashed-line rectangle meanwhile the stiffness correction mechanism 

exhibited in the dot-line rectangle. It is noted that the DSEP is presented by the red 

dashed line. (c) Air spring. (b) Geometric relationship among roller, wedge and 

semicircular cam  

4.3.1. Stiffness model  

As mentioned above, as the centers of roller 3 and 4 are displayed x1 and x2, 

indicating the air springs 1 and 2 are compressed by an amount of x1 and x2, 
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respectively. This leads to the system be acted by the compressed air forces which are 

generated by two rubber air springs as shown in Fig. 4.9 (b).  

Ignoring the mass of the moving part including the load plate, legs, wedges, 

semicircular cams and rollers and applying the virtual work principle, the total virtual 

work acting on the system is equal to zero as given in Eq. (4.20). It is meaningful that 

the force Fs is also the vertical restoring force acting on the load plate. 

1 1 2 22 2 0     s air airF L F x F x

 

                       (4.20) 

where the forces of the rubber air springs 1 (Fair1) and 2 (Fair2) are expressed as below: 

  ( )A    air air wh wh atm whF K x x P P              (4.21) 

in which Kair is the stiffness at the working height as expressed in Eq. (4.6). As 

presented in Fig. 4.9 (c), xwh and x are the working and arbitrary positions of the rubber 

air springs. From Eq. (4.18), the virtual displacement x1 and x2 are obtained as 

below: 

 1

2 2 2

tan
( )

( ) ( )
o

o

x L
H L

x L
R r H L

  

 

 
 

 
   

              (4.22)       

By substituting Eq. (4.22) int o Eq. (4.20), we obtain: 

 1 2 2 2

(H )
2 tan 2

(R r) (H )
 

 
   

o
s air air

o

L
F F F

L
            (4.23) 

Using Eq. (4.18) and (4.21), Eq. (4.23) is expressed as below  

2 2

2 2 2

2 2

(R r)
2 1 (H )

(R r) (H )

(H )
       tan

(R r) (H )


  
     
    
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 
  

o
s L air o

o

o
SC SL

o

H
F K L K L

L

L
F F

L

              (4.24) 
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in which 2
12 tan L airK K  is the equivalent stiffness of the load bearing mechanism, 

FSL and FSC are the static forces of the LBM and SCM, respectively and expressed by:  

   1 1 1 12 ( ) tan  SL wh atm wh air whF P P A K x             (4.25) 

    2 2
2 2 22 ( ) R r (R r)      SC wh atm wh air oF P P A K H           (4.26) 

Based on Fig. 4.9(b), the distance between the static deformation Ho and the origin 

of the coordinate u is written by: 

oL H u                     (4.27) 

Accordingly, Eq. (4.24) is rewritten as: 

2 2

2 2 2 2 2

(R r)
( ) 2 1 tan
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

  
      
     

o
s L o air SC SL

H u
F K H u K u F F

u u
            (4.28) 

By introducing non-dimension parameters as following: 
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Then, Eq. (4.28) is rewritten in term of dimensionless form as following: 
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(4.29)

 

Next, by taking differentiation of the dimensionless restoring force given in Eq. 

(4.29) versus the dimensionless displacement û, we obtain the dimensionless dynamic 

stiffness in vertical direction as following: 
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         (4.30) 

Then, substituting ˆ 0u into Eq. (4.30), the dynamic stiffness ˆ
DSEPK at the desirable 

static equilibrium position is expressed as below: 

     2 2ˆ ˆ ˆK A 1 1 1 1 1                  DSEP o oH D B H C           (4.31) 

This analysis revealed the dependence of the factor (µ) which is defined the ratio of 

the pressure of the SCM to the LBM named “pressure ratio” on the total vertical 

dynamic stiffness of the isolation model given in Eq. (4.30). In order to attain quasi-

zero stiffness at the desirable static equilibrium position, the pressure ratio is calculated 

from Eq. (4.31) by setting  ˆ 0. DSEPK  Based on these analyses, the works including 

the region of the pressure ratio in which it can exist unstable or stable static equilibrium 

positions and the stiffness at these equilibrium positions will be determined and 

analyzed in next section. 
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4.3.2. Analysis of equilibrium position 

The bifurcation and stability of the system without external excitations are discussed 

and analyzed with the equilibria. The static equilibrium points of the system occur 

where ˆ/ 0  pE u  in which Ep is the potential energy of the system,  p ps pgE E E , Eps 

and Epg are the potential energies of the restoring force and the gravity force, 

respectively. 

  ˆ ˆ ˆ/ / / 0        p ps pg s gE u E u E u F F                           (4.32) 

where Fg=Mg with M is the weight of the isolated object which is defined above, is 

calculated by the total weight of the load plate, legs, wedges, semicircular cams and 

isolated load as shown in Fig. 4.9, g is the gravity acceleration 

Combination Eq. (4.32) and (4.29), we have:      

 ˆ ˆ ˆˆ( , ) 0   esf u F F                           (4.33) 

in which  
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ˆ ˆ ˆ ˆ1 1 1 1

o oH H u
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                
           

     (4.34) 

 

  tanˆ
( )

 



L o SL

es
L

K H F Mg
F

K R r
 is the equivalent static force, in the case the system 

attains the DSEP, the equivalent static force will equal zero, it means that the weight of 

the isolated object must satisfy the following equation: 

  1 1( ) tan
2 wh atm whP P A

M
g


               (4.35) 

The case of the isolated load which is calculated by Eq. (4.35). It is evident that in 

Eq. (4.33) the equivalent static force ˆ
esF has no appearance. In this case, plotting the 
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curve for ˆ/ 0  pE u  in the plane  ˆ, u , this curve presents the equilibrium points, in 

shaded region where ˆ/ pE u is positive, out of this region, ˆ/ pE u  is negative as 

shown in Fig. 4.10(a). It can be seen that the number and stability of the equilibrium 

positions may be varied with the pressure ratio . But its real significance is to display 

that  at point A is a bifurcation point of the system and its value is determined by Eq. 

(4.36). When  bif, there is only one stable equilibrium position (0,0) (called center 

point) due to ˆ/ pE u  changing from negative to positive on passing through this 

equilibrium position. This equilibrium position is taken into account as the desirable 

static equilibrium position. But the value of  exceeds bif the system has three 

equilibria including two centers which are on solid curve and an unstable equilibrium 

position (saddle point) lied on dashed line due to ˆ/ pE u  changing from positive to 

negative on passing through this equilibrium position. 

  

Fig.4.10. (a) Stability curves for equilibrium positions; (b-c) the phase orbits for  bif 
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ˆ 0

ˆ ˆ( , )
ˆ




bif

u

df u

du
                     (4.36) 

If the static equilibrium position of the QSAVIM using RAS is not coincident with 

the DSEP, the equilibrium point of the system depends on the equivalent static force 

ˆ
esF  and the pressure ratio  as shown in Fig. 4.11. If bif, there is only one 

equilibrium point (center point) regardless of the equivalent static force as shown in 

Fig. 4.12(a, b), herein, the equivalent static force is drawn by the black solid line, the 

blue solid line presents for the force F̂ given by Eq. (4.34).  

 If >bif the system will occur one or three equilibrium positions depending on the 

equivalent static force in Fig. 4.12(c). In this case, it can be observed that the system 

offers two bifurcation points at 1F̂ and 2F̂ . It is derived that a center point denoted by 

a green filled circle appeared when 2ˆ ˆesF F  or 1ˆ ˆesF F with the equilibrium static 

force is denoted by the black solid line. When 2 1ˆ ˆ ˆ esF F F , the system has three 

equilibria including two centers presented by two green filled circles and a saddle point 

marked with a red filled square. Besides, the system may exist a center as marked by 

green filled circle and an unstable equilibrium point (center-saddle point) plotted by a 

black filled diamond when 1ˆ ˆesF F  or 2ˆ ˆesF F  plotted by green dashed-dot lines, 

where 1F̂  and 2F̂ are the values of extrema of the restoring force determined by Eq. 

(4.37).  

1
1

ˆ ˆ ˆ( )F F u  and 2
2

ˆ ˆ ˆ( )F F u , where 1̂u and 2û  are roots of ˆ ˆ/ 0dF du          (4.37) 
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Fig. 4.11. Equilibrium position in space  ˆˆ , , eu F  

 

Fig.4.12. Restoring force and stiffness curves for various values of the pressure ratio  
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In addition, Fig. 4.12(d-f) present the dynamic stiffness of the QSAVIM RAS for 

various values of the pressure ratio. It can be observed that the dynamic stiffness at the 

center points (denoted by the green filled circles) is positive, conversely, it is negative 

at the saddle point (plotted by the red filled square). At the bifurcation points (drawn 

by black filled diamonds), the dynamic stiffness is equal to zero. However, these points 

are unstable, because the stiffness of the system is changed the sign from negative to 

positive and reversely from positive to negative as the system goes through these 

equilibrium positions. Furthermore, if the equilibrium static force equals zero (red dot 

lines in Fig. 4.12(a-c), the QSAVIM using RAS will achieve the lowest stiffness at the 

DSEP  ˆ 0u . 

It is interesting to note that when bif   the dynamic stiffness of the system is 

always greater than or equal to zero for any equilibrium positions as shown in Fig. 

4.12(d, e). Especially, the stiffness can be quasi-zero at the DSEP for =bif. If >bif, 

it may occur two cases including the dynamic stiffness of the QSAVIM using RAS is 

always positive for the equivalent static force out of range  1 2ˆ ˆ,F F , conversely, the 

QSAVIM using RAS will offer two regions of the dynamic stiffness including the 

positive and negative stiffness areas which depends on the position of the isolated 

object. 

4.4. Dynamic analysis 

A simple model of the proposed isolator is shown in Fig. 4.13 in which M is weight 

of the isolated object as defined in sub-section 4.3.2, K is the dynamic stiffness of the 

system given by Eq. (4.30), Cd is the damping coefficient. The case in which the base 

frame is excited by a signal ze, the excited energy is transmitted to the isolated object 

through an air spring system (including the LBM and SCM) and a damper. This can 

cause the absolute displacement of the isolated object (z) 



79 
 

      

Fig. 4.13. Simple model of QSAVIM 

4.4.1. Dynamic Equation  

The kinetic energy (Ek) of the isolated object: 

21

2
 kE Mz                  (4.38) 

where, z is the absolute displacement of the isolated object. 

The potential energy (Ep) generated by the Fs given in Eq. (4.24) 
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  (4.39) 

where L is the vertical deformation of the system as shown in Fig. 4.9 (b) 

The energy dissipation function: 

 21
(z )

2
  d eD C z                 (4.40) 

herein Cd is the damping coefficient 

Besides, as shown in Fig. 4.13, we have: 
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  ez u d z                    (4.41) 

where u is the relative displacement of the center of the semicircular cam referring the 

DSEP, d is the fixed distance between the base and the DSEP. 

Combining Eq. (4.27), Eq. (4.41) can be rewritten as following: 

 o ez H L d z                    (4.42) 

By applying Lagrange’s equation, we have 

  

(E )
(E )

 
       






k P

k P

d E
d

d E d L dDdz
Q

dt d L dz dz
           (4.43) 

where Q=-Mg is the generalized force in absolute coordinate of z and according to Eq. 

(4.42), dL/ dz=-1. 

 
( ) 0      d e SMz C z z F Mg               (4.44) 

Then, using Eq. (4.41), Eq. (4.44) is rewritten respect to the relative displacement 

(u) of the isolated object as below 

       d S eMu C u F Mg Mz
               (4.45) 

4.4.2. Equation of vibration transmissibility 

In order to simplify the dynamic analysis, it is assumed that the isolate object 

vibrates with small amplitude around the DSEP (u=0) at which the working height of 

the rubber air springs is hwh. By expanding Taylor series, the restoring force given in 

Eq. (4.28) can be expressed as a fifth-order approximate function as below:  

5
6

1

( )


   i
ap o i

i

F F a u u                       (4.46) 
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where
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Through the specifications of the rubber air spring listed in table 4.1, the result is 

that the approximate curve (given by Eq. (4.46)) agrees well with the original one 

(given by Eq. (4.28)) as shown in Fig. 4.14. The notation of the line types is presented 

in the right-top corner panel. 

 

Fig. 4.14. Restoring force curves versus the dimensionless displacement. 

Next, supposing the base is excited by a harmonic excitation  cose ez Z t  with Ze is 

the excitation amplitude in mm and  is the excitation frequency in rad/s. In the same 

manner as in the static analysis section, to simplify the dynamic analysis, some 

dimensionless parameters are introduced as below: 
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From Eq. (4.45), the vibration equation around the DSEP is rewritten in non-

dimension as: 

  
5

2

2

2  cos( )  


      i
i

i

u u u u                        (4.47) 

herein, the prime “  ” is used to denote differentiation with respect to the . 

A Normal form analysis is employed to find out the fundamental solution of the 

dynamic equation, the dynamic equation (4.47) is transformed as 

  ( , )u u u u pxq                   (4.48) 

where 2 2/ 2 / 2 ; q=  ; ( , ) ( , );  
Ti ip e e u u f u u                 and  is a small parameter.  

with 

5
'

2

ˆ ˆ( , ) 2  

ˆ ˆ;  

 

 
 



     
 

  

 i
i

i

i

f u u u u
               (4.49) 

By transforming as following: 

2

2

( , ) ( , )
( , );  ' ' ;  ;    

 
       

dh w w d h w w
u w h w w u w u w

dt dt
                    (4.50) 

 The result is that Eq. (4.48) is transmitted as following: 

( , )    ww w g w w p xq                         (4.51) 

or  

( , )   ww p xq w g w w                         (4.52) 
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Substituting Eq. (4.50) and (4.52) into Eq. (4.48), we obtain: 

   

2

2

2

( , )
( , ) ( , )

( , )
( , );  '

  

   


   

      
 

w

d h w w
p xq g w w h w w

dt
dh w w

f w h w w w pxq
dt


          (4.53) 

The function of 
( , )

( , );  ' 
   

 
dh w w

f w h w w w
dt

can be approximated by expanding 

Taylor series and the higher order  terms can be ignored. We obtain as below: 

     1( , )
( , );  ' ;  ' ;  '  

      
 

dh w w
f w h w w w f w w f w w

dt
          (4.54) 

Substituting Eq. (4.54) into Eq. (4.53), then the balance of 0 and 1 is given by:    

  
 

2
1

2

( , )
( , ) ( , ) ;  '








   

o
wp xq pxq

d h w w
g w w h w w f w w

dt

            (4.55) 

 The state w  can be split into two components as following: 

    p mw w w                 (4.56) 

in which, pw and mw can be: 

2
p i

p

W
w e   and 

2
im

m

W
w e                          (4.57) 

with   i
pW W e    and   i

mW W e ,  W   is the peak value and  is the phase angle. 

 Taking derivative of w  versus the scaling time : 

 
      

1

' ' 2

' ( )

'' ( ) 



    

    


      

p m

i i
p m p m

w i w w

w w w i e W e W




         (4.58) 
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 In addition, the functions of ( , )f w r ; ( , )g w w and ( , )h w w  are determined as below: 

  

*

*

*

( , ', ) [ ] ( , ,r)      (a)

( , ', )=[A] ( , ,r)         (b)

( , ', ) [ ] ( , , )      (c)

 






p m

p m

p m

f w w r f w w w

g w w r w w w

h w w r B w w w r

              (4.59) 

By substituting u w and ' 'u w , then, combination of Eq. (4.49) and Eq. (4.59a) 

we obtain:   

2 2 2 3 3 3 4 4 4 4 5 5 5 5 5 5[f] [ 2  2   2    3  3    4  6  4    5  10  10  5  ]                                       T  (4.60)  

2 2 3 2 2 3 4 3 2 2 3 4 5 4 3 2

2 3 4 5

                 

  


 
  
  

m p m m p p m m p m p p m m p m p m p p m m p m p

m p m p p

w w w w w w w w w w w w w w w w w w w w w w w w w
w

w w w w w
  (4.61) 

in which    i  

Substituting Eq. (4.59) into the second equation of Eq. (4.55), we have:  

  * * * *[A] ( , , ) [ ] ( , , ) [ ] ( , , ) [ ] ( , ,r)  p m p m p m p mw w w r B w w w r B w w w r f w w w          (4.62) 

where  is found from following condition: 

  
2 *

*
2

( , ', )
( , ', )

d w w w r
w w w r

dt
                     (4.63) 

Considering the non-zero 
*( , )w w r , the matrices [A] and [B] are determined by  

           A B B f
               (4.64) 

Finally, the matrices [A] and [B] are expressed as following: 

  2 2 3 4 4 4 4 5 5 5 5[ ] [ 2  2  0 0  0  0 3  3  0 0 0  0  0  0  0  0  10  10  0 0]           A              (4.65) 

 

2 2 2 2 2 2 2 2
2 2 2 3 3 3 4 4 4

2 2 2 2 2 2
4 4 5 5 5 5

[ ] [0 0 /3  -2 /  /3  /8  0  0 /8  /15  4 /3  -6 /

 4 /3  /15  /24  5 /8  0 0 5 /  /24 ]

       

     

               

          

B
     (4.66) 
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By substituting Eqs. (4.57-4.59) into Eq. (4.51), then balancing the 
ie 

and 
ie  

terms, the first-order differential equation in pW and mW  can be written as following: 

2 2 3 2 2
3 5

2 2 2 3 2
3 5

3 10
(1 ) W W W W W 2 W

1 4 16
3 102

(1 ) W W W W W 2 W
4 16

p p m p m p
p

m
m p m p m m

i i i iW

W i i i i

  

  

         
   

              

          (4.67) 

In order to find the steady-state amplitude solutions, pWand mW are set zero, 

simultaneously using with   i
pW W e    and   i

mW W e ,  the result is to obtain: 

  

4 2 3 5
3 5

2 3 5
3 5

3 10
(1 ) W W W 2 W

4 16

2 W
tan

3 10
(1 ) W W W

4 16

  


 

           
 


   


                                 (4.68) 

 Thus, using Eqs.(4.56-57), the result of the relative displacement of the load plate at 

the steady state is obtained as following: 

  cos( )    u w W                   (4.69) 

In addition, by substituting =t n, the excitation signal can be written in 

dimensionless form as: 

  
cos( )e

e
e

z
z

Z
                   (4.70) 

Inserting Eqs. (4.69) and (4.70) into Eq. (4.41), the dimensionless absolute 

displacement response of the isolated object being: 

  cos( ) cos( )z d W                      (4.71) 

where: / ed d Z   
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By using Euler equation: 

 

   
   
   

cos sin
1cos
2  1sin
2

i

i i

i i

e i

e e

i e e



 

 

 









 


  
   


               (4.72) 

Eq. (4.71) can be rewritten as following: 

   1 1ˆ ˆ1 1
2 2

i i i iz d We e We e                     (4.73) 

Letting: 

  1
1

i i

i i

We Ze
We Ze





  



 

 
               (4.74) 

with Z is the absolute vibration amplitude of the isolated object in dimensionless form, 

 is the phase difference between z and ze, that is: 

21 2 cos
Wsintan

1 cos

Z W W

W





   


  

               (4.75) 

According to Eq. (4.74), Eq. (4.73) is recast as below: 

 1 1 cos
2 2

i i i iz d Ze e Ze e d Z                          (4.76) 

Next, it is meaningful that the isolation effectiveness (vibration transmissibility) of 

the QSAVIM using RAS which is defined by the ratio of the absolute amplitude (Z) of 

the load plate to the excitation amplitude (Ze), can be estimated by following formula: 

21 2 cos    a
e

Z
T Z W W

Z
                        (4.77) 
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As seen in Eq. (4.77), the effected vibration isolation is the region in which the 

value of the vibration transmissibility (Ta) is lower than one. This means that the 

absolute displacement of the isolated load is smaller than the excitation.  

Furthermore, to determine the stability of the steady state response solution 

predicted by the Normal form technique, the amplitude of the response must be 

allowed to vary slowly with time. It means that a small disturbance is superposed on 

the steady state solution. The stability is governed by eigenvalue of the Jacobian of the 

Eq. (4.78). The Jacobian can be written as following: 

   11 12

21 22

 
  
 

j j
j

j j
                          (4.78) 

in which j11, j12, j21 and j22 are given in (4.79) 

2 2 2
11 3 5

2 3
12 3 5

2 3
21 3 5

2 2 2
22 3 5

1 3 30
(1 ) W W W W 2

2 2 16

1 3 10
W W W

2 4 8

1 3 10
W W W

2 4 8

1 3 30
(1 ) W W W W 2

2 2 16

  

 

 

  

            
       


        

            

p
p m p m

p

p
p p m

m

m
m p m

p

m
p m p m

m

dW
j i i i

dW

dW
j i i

dW

dW
j i i

dW

dW
j i i i

dW












               (4.79) 

The eigenvalue of the Jacobian is determined as below: 

11 12 2
11 22 12 21

21 22

( ) 0
j j

j j j j
j j


 




    


             (4.80) 

By using the Routh criterion, to determine the boundary of the stability of the 

solution given in Eq. (4.68), it is observed that 11 22( )j j  is negative, it can be deduced 

that the system can have an eigenvalue with a positive real component if 12 21 0j j  , such 
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that 12 21 0j j   is the boundary where the transition from the stable to unstable regions 

occurs. 

4.5. Effects of configurative parameters on vibration transmissibility curve 

4.5.1. Influence of pressure ratio on the shape of the amplitude-frequency 

response curve 

Firstly, the influence of the pressure ratio  defined as the proportion of 2whP  to 1whP

on the relative amplitude-frequency responses, which are numerical simulations of Eq. 

(4.68), is shown in Fig. 4.15(a). The pressure ratio is varied from 1.2 to 1.57, but other 

parameters are kept at the values of =37o, R=60mm, r=20mm, Ho=25.6mm for which 

the dynamic stiffness around the desirable static equilibrium position is predicted by 

using Eq. (4.30) as shown in Fig. 4.15(b). It is interesting to observe that the resonant 

peak amplitude and frequency are decreased according to the growth of the pressure 

ratio . Besides, the boundary of stability of the steady state solution denoted by the 

red dashed lines is also expanded in accordance with the increase in the resonant peak 

including the amplitude and frequency. It is evident that when the pressure ratio is 

upgraded, the dynamic stiffness at the DSEP is reduced as shown in Fig. 4.15(b). As 

known, the benefit of low stiffness is low resonance frequency.  

In addition, as seen in Fig. 4.15(a), the amplitude-frequency curves are bended to the 

right. It means that there exists the frequency jump phenomenon including the jump-up 

and jump-down. The level of bending is reduced as the pressure ratio is increased. For 

each value of the pressure ratio, the system will offer a jump-down and a jump-up 

point. In region between the jump-up and jump-down points (plotted by the dot lines), 

there can exist three branches corresponding to three solution of Eq. (4.47) obtained by 

the Normal form. Among them, the middle branch is unstable solution and unrealizable 

in any experiment determined by the Routh criterion meanwhile the two remaining 

cases including upper and low branches are stable solutions. For a given frequency of 
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excitation, the steady response of the system can only be upper branch (called resonant 

solutions) or low branch (called non-resonant solutions). The initial conditions 

(position and velocity) will determine which branch will actually occur. This will be 

explained clearly next section.  

 
Fig.4.15. (a) The relative amplitude-frequency response of the QSAVIM using RAS 

with Eq. (4.68) for Pwh1=2 bar, =0.06, =37o, R=60mm, r=20mm, Ho=25.6mm and 

=1.2, 1.3, 1.4, 1.5, 1.57. (b) Dynamic stiffness curves with the same parameters in (a). 

The trajectory of these frequency jump points versus the frequency is plotted in Fig. 

4.16 (a) for =0.47, 0.5, 0.7, 1.0, 1.2, 1.43, the same other parameters as in Fig. 4.15. 

The point of jump-up frequency is presented by the red solid line, the jump-down one 

is exhibited by the blue dashed line. It can be noteworthy that, with values of =1.43 or 

0.47, the jump-down point closely moves to jump-up one. In other words, the effect of 

the frequency jump phenomena on the dynamic response is reduced. However, it is 

clear that as shown in Fig. 4.16(b) that if =0.47, the non-dimension dynamic stiffness 

at the DSEP is quasi-unity. In this case, the dynamic stiffness of the proposed system at 

the DSEP is nearly equal to that of the load bearing mechanism in vertical direction. 

The result is that in the resonant region the isolation effectiveness of the QSAVIM 

using RAS (presented by the red solid line) may be lower than that of the ETVIM in 

which the load plate is supported by the LBM meanwhile the SCM is removed (the 

0 5 10 15 20 25
0

1

2

3

4

5

 

 

 

14 15 16
2

3

4

5

-0.4 -0.2 0.0 0.2 0.4
0.0

0.2

0.4

0.6

 

 

W K̂



90 
 

blue dashed line) as presented in Fig. 4.17. Oppositely, if =1.43 for which the 

dimensionless dynamic stiffness at the DSEP is smaller than one (approximately 0.12), 

the isolation effectiveness of the proposed system (exhibited by the pink dot line) is 

improved remarkably compared with that of the system without the SCM. 

 

Fig. 4.16. (a) Trajectories of the frequency-jump points for =0.06 and the same other 

parameters as in Fig. 4.15. Herein, the red solid line is denoted for the jump-up points 

and the jump-down points are presented by the blue dashed line. (b) Dynamic stiffness 

curves for =1.43 and 0.47 the same other parameters as in (a) 

 
Fig. 4.17. Comparison of isolation effectiveness of the ETVIM and the QSAVIM using 

RAS having =0.06 and =0.47 and 1.43 and the same other parameters as in Fig. 4.15 

(a). 
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Secondly, on the aspect of geometry, to obtain the desirable static equilibrium 

position, the dependence of the isolated object weight on the wedge angle  and the 

radius r of roller is shown in Fig. 4.18(a). Among the inclined angle  and the radius r, 

the isolated load is strongly affected by the inclined angle . However, in the proposed 

structure, the load bearing mechanism is only employed to support the isolated object, 

meanwhile, the dynamic stiffness of the system is corrected by the stiffness corrected 

mechanism, therefore, with the suitably chosen parameters of r,  and 1whP  for the 

corresponding isolated mass, it is possible to gain the DSEP but not to obtain the 

desirable low dynamic stiffness at this position. Indeed, in order to satisfy these 

requirements, there is a relation between the pressure ratio  and these geometric 

parameters so that the dynamic stiffness at the DSEP is quasi-zero as shown in Fig. 

4.18 (b). It can be seen that the pressure ratio  is increased according to the growth of 

the radius r of the roller and the inclined angle . Specifically, if the angle  is smaller 

than 45 degrees, the influence of the radius r of the roller on  is light, after 45 degrees, 

the pressure ratio is strongly affected by the variation of the radius r. Similarly, the 

slope of the curve of the pressure ratio with respect to the wedge angle  will be 

upgraded along with the expansion of this angle. 

 
Fig. 4.18. Relationship between the geometric parameters consisting of the wedge 

angle , the radius r of the roller and the isolated load M (a) and the pressure ratio  
(b). It is noted that for this relationship the QSAVIM using RAS obtains the quasi-zero 

stiffness at the DSEP, 1 2 whP bar  
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4.5.2. Influence of geometrical parameters on the resonant peak. 

 

Fig. 4.19. Relative amplitude-frequency curves of the proposed model with Eq. (4.68) 

for r=20 mm and various values of  (a), for =37o and various values of r (b), herein, 

1 2 barwhP , =0.06, R=60 mm, Ho=25.6mm, other parameters noted in top-right corner 

panel for (a) and bottom-right corner panel for (b) 

Furthermore, the effects of the geometrical parameters including the wedge angle  

and the radius r of the roller on the shape of the amplitude-frequency curve are studied 

when the dimensionless dynamic stiffness value ˆ
D S E PK  at the DSEP is always equal to 

0.2. Firstly, the influence of varying the wedge angle  is taken into account as shown 

in Fig. 4.19 (a). As above analyzed, in order to achieve ˆ 0 .2D SE PK , as the values of 

=30o, 35o, 40o, 45o, the value of r=20 mm and the same other parameters as in Fig. 

4.16, the pressure ratio calculated by using Eq. (4.31) is equal to 0.89, 1.21, 1.59, 2.09. 

The result confirmed that peak amplitude is reduced in accordance with the increase in 

value of , oppositely, the peak frequency is increased lightly. Secondly, the radius r of 

the roller is varied with a value set of 10, 20, 40 and 60mm, the value of =37o and 

other parameters are remained as in the first case. For which, the pressure ratio is 

determined as following: 1.23, 1.35, 1.58 and 1.82. It can be observed from Fig. 

4.19(b) that there is a small reduction in the resonant peak amplitude and frequency 
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when the diameter of the roller is developed. These results are also confirmed in Fig. 

4.20 and it may be seen that the effect of the wedge angle  on the resonant peak is 

stronger than that of the diameter of the roller.   

  

Fig. 4.20. Dependence of the resonant peak on the geometrical parameters of the 

system given by Eq. (4.68) with the same parameters as in Fig. 4.19 (a) Peak 

amplitude. (b) Peak frequency 

4.5.3. Effects of damping on vibration transmissibility curve 

In order to study the effects of the parameter  on the shape of the amplitude-

frequency curve, the parameters of the QSAVIM using RAS are set as following: 

1 2 barwhP , =37o, R=60mm, r=20mm, Ho=25.6mm and the pressure ratio =1.35 for 

which the dimensionless dynamic stiffness ˆ
DSEPK  at the DSEP is equal to 0.2. 

Meanwhile, a set of parameters =0.01, 0.02, 0.04 and 0.07 is employed to investigate 

these effects. By using Eq. (4.68), the amplitude-frequency curves are predicted as 

shown in Fig. 4.21, herein, the notations of the response curves are presented in detail 

in upper-left corner panel. It reveals that the peak amplitude and the resonant frequency 

are increased as the damping ratio is reduced. Besides, the system with a smaller value 

of the parameter  will have greater bending level of the amplitude-frequency curve. 

W
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Especially, in this case, with =0.01, the resonant peak is very far compared with that 

of >0.01. 

 

Fig. 4.21. Amplitude-frequency response of the QSAVIM using RAS for Pwh1=2 

bar, =37o, R=60mm, r=20mm, Ho=25.6mm and =1.35. 

4.6. Complex dynamic analysis 

As presented above, the effects of the pressure ratio (µ) and geometrical parameters 

on the dynamic response as the vibration transmissibility curve were disclosed thank to 

Normal form method. However, this method is considered as one of the approximate 

analytical methods, which carried out through some assumption in which the load plate 

vibrates around the equilibrium position with small amplitude as there is a harmonic 

excitation from the base, simultaneously, the restoring force is mainly contributed by 

the compressed air and is expressed simply by an approximated polynomial. 

Nevertheless, the proposed model offers strongly complex and nonlinear characteristic 

in dynamic response such as the coexistence of multiple solutions, bifurcation, chaotic 

motions, etc…But these phenomena are not revealed by the simple analytical method 

in the previous section. This is also one of the limitations of using the analytical 

method.  
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Hence, it is necessary to explore more complex dynamic behavior through the 

numerical integration for Eq. (4.45) by using fourth-order Runge-Kutta algorithm  with 

a fixed time step of 1/100 of the harmonic excitation period. Simultanuosly,  the data of 

maximum amplitude are sampled via using Poincaré sections. Namely, the force of the 

air spring contributed by three components: compressed air, friction and viscoelastic 

will be taken into account which means that Fs is calculated by Eq. (4.23) in which airF

is replaced by Fras given in Eq. (4.1). Besides, for a more challenging excitation, a 

random signal excited from the base will be also considered to evaluate the isolation 

response of the QSAVIM using RAS.  

4.6.1. Frequency jump phenomenon  

By integrating numerically for Eq. (4.45) in which a harmonic excitation with 

amplitude of 10 mm and frequency swept from 0 to 3 rad/s (denoted by the dashed 

line) and vice versa from 3 to 0 rad/s (the dot line) is used, the result is to obtain the 

amplitude-frequency response curve as shown in Fig. 4.22. Meanwhile, the solid line 

denotes the amplitude-frequency response curve through Normal form solution. Where, 

the pressure Pwh1 of the air spring 1 is set at the value of 2.5 bar, the dimensionless 

stiffness value at the DSEP is 0.01 and damping ratio () is 0.1 meanwhile other 

parameters are the same as the cases mentioned above, obtaining the pressure ratio of 

0.7245. It is noteworthy to observe that the Normal form solution with the fifth-order 

approximate curve of the restoring force gives closer approximation to the time-

stepping solution 

As observed in Fig. 4.22, the simulation result confirms that the frequency jump 

phenomenon including the jump up about 1.7 rad/s and jump down 2.2 rad/s is 

occurred. The frequency jump can appear the resonant or non-resonant solution as the 

excited frequency is within the up and down frequency range, which means that this 

phenomenon is dangerous for vibration isolation. Accordingly, what steady-state 

solution will be obtained depending on the initial state which includes the position and 
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velocity. Namely, each resonant and non-resonant solution is determined by the region 

of the initial states determined by using Poincaré section. For example, if the frequency 

is 1.9 rad/s, the region of the initial state for obtaining the resonant response denoted by 

the yellow filled area whilst the area filled by dark blue color is representative for the 

non-resonant one as presented in Fig. 4.23(a). Although, the system can occur a 

resonant or non-resonant response, the solution of which is periodic with a fixed point 

marked by the filled circles as shown in Fig. 4.23(b).  

  
Fig. 4.22. Comparison between the time-stepping and normal form method  
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Fig. 4.23.(a) Initial state family of Eq. (4.45) for =0.1, Pwh1=2.5 bar, and ˆ 0.01DSEPK  

(b) Phase portray for initial states u=0 mm; v=0 m/s; and u=0 mm, v=0.1 m/s 

4.6.2. Bifurcation phenomenon  

As mentioned in the analysis solution, the dynamic behavior is only considered as 

the system attains the desirable static equilibrium position. Therefore, to evaluate 

comprehensively the complex dynamic behavior of the system in the case in which the 

equilibrium position will be drifted away from the wanted equilibrium position. This 

indicates that the air pressure of the load bearing mechanism is not changed but that of 

the isolated load is changed. Indeed, in the case of Pwh1= 2.5 bar, µ=0.704 and =0.1, 

the optimal load to obtain the DSEP is 4.747 kg. Two cases are considered as 

following:  
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Fig. 4.24. Dimensionless displacement response with respect to frequency for 

M=4.509kg (a), M=4.984 kg (c); phase orbit for M=4.509 (b), M=4.984 kg (d) 

1st study case, the isolated load is reduced about 5% comparing with that of the 

optimal load, remaining 4.509 kg. Its complex dynamic behavior is shown in Fig. 

4.24(a). Clearly, there is the appearance of bifurcation of the amplitude-frequency 

curve from 1-periodic to 2- periodic solution and reversely.  The amplitude of the 2-

periodic solution may be increased more significantly than that of the 1-periodic 

solution. For example, if there are two signals of excited frequencies of 8 and 10 rad/s, 

Fig. 4.24(b) presents the phase trajectory and Poincáre section (denoted by filled 

circles) indicating that the vibration level of the isolated object subjected to the second 

excited frequency is higher than the first one. 

0 4 8 12 16
-6

-3

0

3

6

Frequency 
0 5 10 15

-4

0

4

8

Frequency 

a. c.

-8 -4 0 4

-0.1

0.0

0.1

0.2

Dimensionless 
displacement 

Dimensionless 
displacement 

b. d.

0.0 3.5 7.0
-0.12

-0.08

-0.04

0.00

0.04

0.08



99 
 

2nd study case, in the same manner of reducing the isolated load, increasing the isolated 

load about 5 % (obtaining 4.984 kg) compares with the optimal load. The result is 

presented in Fig. 4.24(c) and (d). Similar to the aforementioned, there is the appearance 

of the bifurcation phenomenon in the amplitude-frequency curve. However, in this 

case, bifurcation occurs in two regions including the frequency from 8 to 10.5 rad/s (2-

perriodic solution) and from 13 to 14.5 rad/s (3-perriodic solution) and it is noteworthy 

that in the bifurcation region, the vibration level of the isolated load may be increased 

impressively. 

4.6.3. Dynamic response under random excitation 

In order to see clearly the isolation effectiveness of the QSAVIM using RAS, a 

random excitation from the base is expressed by Eq. (4.81) described in [60].  

 
1

sin
N

e ei i
i

z Z i t 


                  (4.81) 

in which 2 ( )eiZ P i n n   is the amplitude with i=1,2,3…,N and n=2/90, =1.5 

rad/s is the fundamental frequency , i is a random variable. P(in) is calculated as 

following: 

1

2

o

o

( )  for 

( )

( ) for 

w

o
o

w

o
o

n
P n n n

n
P n

n
P n n n

n





  
  
   

 
 

 

              (4.82) 

with P(no)=16x10-6, w1=2, w2=1.5 and no=1/2. 

Fig. 4.25(a) shows the time history of the random signal with the maximum 

displacement of 8 mm simultaneously, the power spectrum density of the random 

excitation is denoted in Fig. 4.25(b). It is noted that the energy of the excitation is 

distributed mainly within 1.520 rad/s. In this work, the parameters of the QSAVIM 



100 
 

using RAS including Pwh1, µ, are kept as in Fig. 4.24. Considering three cases of the 

isolated load include the 4.747, 4.509 and 4.984 Kg. The first load case considered as 

the optimal load indicates that the system can attain the DSEP but for two remaining 

cases, the equilibrium position of the QSAVIM using RAS is drifted away from the 

DSEP. The result is to obtain the isolation response of the system as presented in Fig. 

4.26 in which the detailed annotation of the line types is presented in top-right corner 

panel. It is interesting to see that with M=4.747 kg, the vibration of the isolated object 

is attenuated strongly. Indeed, the steady state vibration amplitude of the system is 

approximately 3mm, whilst reducing or increasing the isolation load about 5% 

indicating M=4.509 kg or 4.984 kg will lead to the increase in the amplitude about 

56.25% comparing with the excitation. This is evident because it exists the excited 

frequency being in the region comprising from 8 to 12 rad/s for the case of M=4.509 kg 

(seen Fig. 4.24(a)) and from 8 to 14.5 rad/s for M=4.984 kg (seen Fig. 4.24(c)) in 

which the vibration amplitude of the isolated object can be developed. Furthermore, 

this simulation result also proved that the isolation effectiveness of the QSAVIM using  

RAS is the best when the system obtains the desirable equilibrium position as shown in 

Fig. 4.27. It can be seen that comparing with the excitation, the energy of the QSAVIM 

using RAS bearing the optimal load is reduced remarkably whilst for two remaining 

loads, it is developed.  
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Fig. 4.25.(a) Response with respect to the time of the excitation, (b) Power spectrum 

density of the excitation. 

 

Fig. 4.26. Time history of displacement of the QSAVIM using RAS for three cases 

including M=4.747, 4.509 and 4.984 kg, the same other parameters as in Fig. 4.24 
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Fig. 4.27. Comparison of power spectrum density of displacement of the QSAVIM 

using RAS supporting various loads 

4.7. Design procedure for obtaining quasi-zero stiffness isolator  

The results obtained above indicate that the more reduction in stiffness is, the more 

the region of effective isolation is broadened and the proposed system still remains the 

load support capacity. Besides, as the QSAVIM obtains the lowest dynamic stiffness at 

the desirable static equilibrium position, its isolation effectiveness is much better than 

that of the case without achieving the DSEP.  

Hence, the parameters of the pressure 1whP of the LBM and pressure 2whP  of the SCM 

are very important for design of the QSAVIM. Namely, the pressure 1whP of the LBM 

should be adjusted according to the isolated load by using Eq. (4.35) so that the system 

always achieves the DSEP. The low dynamic stiffness ˆ
DSEPK  at the DSEP will be then 

chosen preliminarily. From this selection, the pressure ratio µ will be calculated thank 

to Eq. (4.31), meaning that the pressure 2whP  of the SCM should be determined by 

2 1wh whP P .  Then, the prediction of the isolation region will be realized by numerical 

simulation of the vibration transmissibility by using Eq. (4.77). If the demanded 

isolation region is enclosed by the predictable one, the output parameters (R, r, , Pwh1, 

10-1 100 101 102
10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

 
 
 

M=4.747
M=4.509
M=4.984

Frequency (rad/s)



103 
 

Pwh2)  are obtained , whereas, returning the step of preliminary selection of ˆ
DSEPK  will be 

done by reducing the value of ˆ
DSEPK  until attaining the demanded isolation region. The 

design procedure of the proposed model using RAS is shown clearly in Fig. 4.28.  

Additionally, the inclined angle   of the wedge is calculated preliminarily by using 

the Eq. (4.35) to ensure the maximum load and pressure condition. As analyzed, if the 

inclined angle  is large (more than 45 degree), the deformation of the rubber air 

spring calculated in the second equation of Eq. (4.18) can exceed the design position 

region of an air spring given by manufacturers. But if the inclined angle  is too small, 

this will result in a difficulty for bearing the isolated load. Besides, the radii of the 

semicircular CAM and roller can be chosen according to the demandable dimension of 

the QSAVIM using RAS because the effects of these parameters on the vibration 

transmissibility is unremarkably compared with that of the pressure.  
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Fig. 4.28. Design procedure of the QSAVIM using RAS with the quasi-zero dynamic 

stiffness characteristic at the DSEP 
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4.8. Experimental result and apparatus 

As shown in Fig. 4.29, a prototype of the QSAVIM using RAS with the parameters 

listed in the table 4.2 is built to assess the vibration transmissibility of the theoretical 

model. For this purpose, the isolation performance of the proposed model is compared 

with that of the ETVIM in which the load plate is supported by the LBM meanwhile 

the SCM is removed. In order to realize the works, both QSAVIM and ETVIM will be 

experimentally done in which the load capacity, the static deformation of the QSAVIM 

and ETVIM as well as excitation conditions are the same.  

Table 4. 2: The parameters of the QSAVIM using a RAS 

Parameters Original values 

Air pressure of the power supply 6 bar 

Atmospheric pressure 1 bar 

Radius of cam 60mm 

Radius of roller 20 mm 

Inclined angle of the leg 37o 

M 70kg 

The experimental apparatus is set up as shown in Fig. 4.30(a) and the process of 

collecting data is described in Fig.4.30(b). Herein, the base frame of the QSAVIM is 

fixedly placed on the supported plate of the hydraulic shaker manufactured by T.D. Le 

et al. [61]. The configuration of the exciter is shown in Fig. 4.31(a) in which the 

motion of the supported plate is realized by a hydraulic cylinder. The position of the 

supported plate is monitored by a linear sensor with mode RLP50S. In this 

configuration, the hydraulic cylinder is controlled by a servo valve manufactured by 

Yuken with mode EHDFG-04 as shown in Fig. 4.31(b). Additionally, controlling the 

hydraulic circuit is performed through a NI card 6221 which is worked as an A/D 

converter to connect the computer and peripheral devices (sensor, servo valve…). This 
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shaker can generate the displacement of the supported plate with maximum amplitude 

of 15mm and maximum frequency of 63 rad/s.  

 

                                 
Fig. 4.29. Prototyping of Vibration isolation model 

As the supported plate of the shaker is excited with a desirable signal (ze), this 

excitation will be transmitted to the load plate of the QSAVIM through the base frame. 

The relative displacement (u) and absolute acceleration of the load plate (z) are 

measured by a linear sensor (LZ-19) and an accelerometer 2g (AS-GB), respectively. 
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Both data from these two sensors are sent to the PC thank to the NI card 6221. In these 

experiments, Matlab/Simulink is employed to collect these data. It is noted that the 

absolute displacement of the load plate is indirectly measured by using Eq. (4.41).  

  

Fig. 4.30. (a) Experimental setup, (b) Schematic Diagram of obtaining data 
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Fig. 4.31. (a) Configuration of the hydraulic shaker; (b) Hydraulic circuit 

The 1st study case: To investigate the effects of the SCM on isolation performance, 

the excitation is the sinusoidal signal with the amplitude of 10 mm and frequency 

swept from 0 to 50 rad/s. As known, the vibration isolation only occurs when the 

transmissibility is less than one. The experimental vibration transmissibility of the 

QSAVIM using RAS and the ETVIM are compared in Fig. 4.32. The latter denoted by 

the dashed line can not prevent the excitation having frequencies less than 37.7 rad/s, 

meanwhile, by using the SCM, the former with the pressure ratio µ=1.8 exhibited by 

the solid line can mitigate the vibration transmissibility from the base to the load plate 

for excited frequencies larger than 18.8 rad/s. In addition, the proposed model has 
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resonant frequency smaller than that of the ETVIM that is close to 12.5 rad/s for the 

former and 27 rad/s for the latter. This result means that the isolation region of the 

proposed model is extended toward the low frequency compared with that of the 

ETVIM. Furthermore, at the resonant frequency, the vibration transmissibility of the 

QSAVIM using RAS is smaller than that of the ETVIM. Indeed, as seen in Fig. 4.32, 

the values of the absolute vibration transmissibility of the isolated model with and 

without SCM at corresponding resonant frequencies are approximately 1.4 and 3.2, 

respectively. This experimental investigation proves that the isolation effectiveness of 

the QSAVIM using RAS is better than the ETVIM.  

  

Fig. 4.32. Comparison of the experimental transmissibility between the QSAVIM 

using RAS for µ=1.8 and ETVIM  

The 2nd study case: In this case, the effects of the various values of the pressure ratio 

 on the vibration transmissibility curve of the QSAVIM using RAS are 

experimentally assessed. For this purpose, two values of the pressure ratio including 

=1.1 and =1.6 are considered. The experimental result of the vibration 

transmissibility shown in Fig. 4.33 reveals that when the air pressure in the air spring 2 

at the DSEP is 1.6 times the air pressure in the air spring 1, the frequency range in 

which the vibration isolation takes effect is broadened compared with that in the case 
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of =1.1. As observed, the isolation region of the QSAVIM using RAS with =1.1 is 

larger than 25 rad/s, meanwhile with =1.6 the proposed model can isolate for input 

frequencies greater than 21 rad/s. In addition, as numerically simulated in Fig. 4.15, the 

higher the pressure ratio is, the lower the resonant peak comprising of the frequency 

and peak value is as well as the frequency jump phenomenon may be vanished. Indeed, 

this is also proved by the experiment, in the case of =1.6, the QSAVIM using RAS 

obtains the resonant frequency and the peak value are approximately 15.7 rad/s and 1.5 

respectively, whereas in the other case, the values are about 23.8 rad/s and 1.9 

correspondingly. The phenomenon of frequency jump almost disappeared for the value 

of =1.6 while it appeared around the frequency of 25 rad/s for =1.1. 

  

Fig. 4.33. Experimental transmissibility curves of the QSAVIM using a RAS for =1.1 

and 1.6  

The 3rd study case: The pressure ratio  of the QSAVIM using RAS is set at the 

value of 1.6, while the other parameters are the same as in the 2nd case. The isolation 

response of the proposed model and the ETVIM for a multiple frequency excitation 

which is a linear combination of the harmonic signals including 19, 22 rad/s and 25 

rad/s is performed as shown in Fig. 4.34. Firstly, the absolute displacement response of 
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the former and latter are shown in Fig. 4.34(a) and (c), respectively. Comparing 

between them, the vibration level of the QSAVIM using RAS for =1.6 is lower than 

the excitation as seen Fig. 4.34(a), the detailed notations of the response curves are 

presented in upper-right corner of the figure, oppositely, as the stiffness corrected 

mechanism is not setup along with the load bearing mechanism, the displacement of 

the load plate is increased as observed in Fig. 4.34(c). Secondly, the absolute 

acceleration response of the QSAVIM using RAS with =1.6 and the ETVIM are 

compared in Fig. 4.34(b) and (d), respectively. The experimental result confirmed that 

the isolation effectiveness of the QSAVIM using RAS outperforms in comparison with 

the ETVIM. 

 
Fig. 4.34. Time history of absolute displacement (a, c) and acceleration (b, d) of the 

load plate in the case of platform with =1.6 and the one without SCM. Noted that the 

isolated load is the same as in Fig. 4.33. 
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Fig. 4.35 shows the power spectrum density (PSD) of the absolute displacement of 

the load plate for the same excitation as in Fig. 4.34. The annotation for the types of the 

lines is presented in the upper-right corner of the figure. As clearly seen, at the steady 

state motion, the displacement response of the load plate has the same frequencies as 

the excitation, while the free vibration term is absent. The decay of the free vibration 

term is caused by the positive damping, showing that the damping phenomenon exists 

in the experimental model. In addition, by comparing with the excitation, the vibration 

level of the load plate is lessened. The result of this experiment also confirms that the 

vibration attenuation is increased in accordance with the growth of the excitation 

frequency.  

 

Fig. 4.35. PSD of the absolute displacement of the load plate. 
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spring was analyzed and experimentally identified, showing the hysteresis response of 

the air spring. From this identified result, the static analysis and the stability of the 

equilibrium position of the proposed isolation model were analyzed. It confirmed that 

the dynamic stiffness curve is concave parabola and obtains the minimum at the DSEP. 

Regulating the pressure of the LBM can achieve the wanted stiffness even it can attain 

the quasi-zero stiffness at the DSEP.  

Secondly, the dynamic equation of the isolation model subjected by a harmonic 

vibrating base was established based on the analysis results. The amplitude-frequency 

relation, vibration transmissibility as well as steady state solution were found via 

Normal form method. The effects other configurative and working parameters on the 

frequency response were investigated, proving that the lower stiffness is, the larger the 

isolation region is, simultaneously the peak and amplitude and frequency is also 

reduced and unstable branch of the amplitude-frequency curve is narrowed. Specially, 

the isolated region of the proposed model is larger than that of the ETVIM. 

Additionally, the investigational results also indicated the drawback of the QZS 

isolated method as the system doesn’t obtain the DSEP. The proposed model can 

surmount easily this issue by regulating the pressure of the LBM meanwhile the 

dynamic stiffness of the model can be remained at the desirable low value through 

regulating the pressure of the SCM. 

Finally, a prototype of the QSAVIM using RAS was built to assess the vibration 

transmissibility of the theoretical model. An experimental apparatus was also set up to 

collect the data. Again, the experimental results confirmed the isolated effectiveness of 

the proposed model and the advantages of the proposed against the ETVIM. Finally, 

design procedure of the proposed model was suggested to obtain the desired isolated 

response. 
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CHAPTER 5 

 A QUASI-ZERO STIFFNESS ADAPTIVE VIBRATION 

ISOLATION MODEL USING PNEUMATIC CYLINDERS 

 

This chapter will consider an alternative structure of the QSAVIM in which the 

rubber air springs are replaced by pneumatic cylinders (PC). This model is named 

QSAVIM using PC. Firstly, the stiffness of a pneumatic cylinder is built and its 

frictional model is identified by using virtual prototyping technical. Next, the stiffness 

of the modified model is found and analyzed. Then, the effects of the configuration 

parameters such as the auxiliary chamber volume as well as the wedge angle on the 

system stiffness are taken into account. The stability of the modified model is also 

analyzed. Besides, the frequency-amplitude relation as well as the force 

transmissibility of the modified model are studied and established. Furthermore, the 

family of the initial conditions named the attractor-basin phase portrait affecting on the 

dynamic response will be detected. This chapter is organized as following: section 5.1 

describes structure of the QSAVIM using PC. Section 5.2 shows the pneumatic 

cylinder. Section 5.3 to 5.7 introduce the stiffness analyses. Section 5.8 presents the 

numerical simulation of the modified model. 

5.1. Model of QSAVIM using PC 

In the same way of the isolated model introduced in chapter 4, herein the isolated 

model is modified a few by replacing four rubber air springs by two pneumatic 

cylinders including cylinders 1 and 2 in which each cylinder is connected with an 

individual tank (called auxiliary chamber).  Indeed, the compressed air can flow from 

cylinder 1 into the tank 3 and vice versa meanwhile the cylinder 2 is connected to the 

tank 4. Each end of the cylinder is linked with the connector 8 through the rod 5, the 
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rod 9. A remained end of the rod 5 is fixed on the cylinder but the other of the rod 9 is 

fixed on the piston sliding on the cylinder. Especially, the cylinders only slide 

horizontally without frictional phenomenon thank to sliders 6 sliding on fixed guidance 

bars 7. Thus, the load bearing mechanism comprises the wedges, rollers and pneumatic 

cylinder 1 with the tank 3. The stiffness correction mechanism includes semicircular 

cams, rollers 4 and pneumatic cylinder 2 with the tank 4. While the motion of the load 

plate as well as the semicircular cam and wedge is the same as the isolation model 

described in chapter 4. The stiffness of the QSAVIM using PC can offer a desirable 

low value by adjusting the pressure in cylinders 1 and 2. 

 
Fig. 5.1. 3D model of the modified isolator: 1 and 2- pneumatic cylinder; 3 and 4-tank; 

5 and 9-rod; 6 slider; 7-guidance bar; 8-connector; (Published by Vo et al. “Static 

analysis of low frequency Isolation model using pneumatic cylinder with auxiliary 

chamber”, International Journal of Precision Engineering and Manufacturing) 
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5.2. Pneumatic cylinder with auxiliary chamber 

5.2.1. Pressure change  

By applying the first law of thermodynamic and ideal air equation presented in 

chapter 3, the pressure equation in the pneumatic chamber is expressed as below: 

     
in air in out air

n
P G R T G R T PV

V
                        (5.1) 

where: T and P are the temperature and pressure of the air in the pneumatic working 

chamber, V is the volume of the working chamber. Gin and Gout are mass low rates at 

the inlet and outlet, Rair is the gas constant (Rair=287 J/kg.K), n=Cp/Cv is the ratio of 

specific heat capacity. 

Considering, the pneumatic cylinder with an auxiliary chamber working as an air 

spring is exhibited in Fig. 5.2. The air flows from the cylinder into the chamber, 

causing a displacement of the piston an announce x, by applying the first law of 

thermodynamic and ideal air equation, the pressure changing equations in the 

pneumatic cylinder (Pcy) and the auxiliary chamber (Pac) are expressed as following: 

  
    

cy out air cy
cy

n
P G R T PV

V
                            (5.2) 

  


ac in air
ac

n
P G R T

V
                            (5.3) 

in which Vcy and Vac are the volumes of the cylinder and the auxiliary chamber (tank), 

respectively, h is the height of the cylinder as presented in Fig. 5.2, A is the area of the 

piston and 

   Vcy=A(h-x)                   (5.4) 

The air leakage and pressure drop in the line are neglected, the result is:  

  

out in

cy ac s

G G

P P P



 
                                            (5.5) 
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The pressure change process in the air spring is obtained as below: 

   
s

s
ac

nP
P Ax

h x A V


 
                                     (5.6) 

herein, A is the effectiveness area of the pneumatic cylinder. 

From Eq. (5.6), the air pressure in the cylinder at an arbitrary position is expressed 

as following 

  
n

ac
s so

ac

Ah V
P P

Ah V Ax

 
    

                                  (5.7) 

herein Pso is the pressure in the cylinder at the initial position  

 
Fig. 5.2. Schematic diagram of the pneumatic spring with an auxiliary chamber 

Instead of doing experiment to assess the predicted pressure in Eq. (5.7), a virtual 

model of the pneumatic cylinder with auxiliary chamber is built by using AMEsim 

software as shown in Fig. 5.3. In which, the effective area of the cylinder A=0.002m2, 

the length of the piston stroke h=150mm, the initial pressure of the cylinder Pso is set at 

the value of 2.5 bar, the volume of the auxiliary chamber Vac is set at the various values 

of 0.001m3, 0.01m3, 0.015m3 and 0.020m3. Besides, the dead volumes at the two ends 

of cylinder and the effect of heat exchange in the air spring are considered in a virtual 

model. The comparison between the analysis solution and the simulation result from 

the virtual model is presented in Fig. 5.4. It can be observed that the pressure obtained 

from virtual model is always smaller than that predicted by Eq. (5.7) excepting the 

initial position. Because the analysis solution neglects the dead volumes at the ends of 

the cylinder, the length of the air lines as well as compressibility of the line, etc. 

h Pcy

Vcy

Initial position
x Auxiliary chamber

Pac

Vac
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However, the variation trend of pressure in the air spring obtaining from Eq. (5.7) and 

the virtual model are consistent. Hence, the predictable solution will be employed for 

static analysis of the proposed isolation model in next section. 

 

 

Fig. 5.3. Virtual model of the cylinder with auxiliary chamber built by AMEsim 

software for A=0.002m2, h=150mm, PS0=2.5 bar, Vac= 0.001m3, 0.01m3, 0.015m3 and 

0.020m3 
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Fig. 5.4. Pressure-changing process in pneumatic spring predicted by Eq. (5.7) and 

obtained by the virtual model for various volumetric values of the auxiliary chamber: 

Vac=0.001 m3 in subplot (a); Vac =0.01 m3 in subplot (b); Vac =0.015 m3 in subplot (c); 

Vac =0.02 m3 in subplot (d); (Details for the line types are presented in left-top corner 

panel of each figure) 
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5.2.2. Frictional model 

 Because of the nonlinear dynamic characteristic as well as the existing of the 

relative sliding between the piston and cylinder, it is the need for analyzing the 

complex behavior of the proposed system. As shown in chapter 3, the sliding friction 

model (Fsf) is presented as following: 

( / )( )    
ns

r sv v
sf c st c rF F F F e v                                            (5.8) 

in which Fc is Coulomb friction force, Fst is the static friction force, vs is the Stribeck 

velocity, vr is the relative velocity between two contacting surfaces,  is the viscous 

friction coefficient and ns is the exponent of the Stribeck curve.  

 

Fig. 5.5. Virtual test-rig of pneumatic cylinder using AMEsim software 
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 In order to identify parameters of the friction model of a cylinder, instead of 

experiment, a virtual prototype technique shown in Fig. 5.5 is built through AMEsim 

software. This technique ensures the accuracy and reduces the fabrication time because 

the environment of a virtual model is similar to an actual environment. For instance, it 

exists the heat exchange between the air in cylinder and surrounding environment, the 

dead volume of the cylinder, frictional phenomenon, etc. Herein, the cylinder used for 

identification has the piston diameter of 80 mm, rod diameter of 32 mm, stroke length 

of 300 mm and the dead volume at two ends of 50 cm3 whilst the parameters for 

simulation is given in table 5.1. During the simulated process, the cylinder is fixed 

meanwhile the speed of load attached at the end of rod is controlled to track the 

constant value through introducing a PID controller simultaneously its acceleration is 

measured by an accelerometer. In this identification, the frictional force between the 

cylinder and piston is not measured directly that it is calculated as following:  

 1 2

2 1

      for Extending
  

      for Retracting 

    

ef

sf
ef

F F F
F

F F F
                            (5.9) 

Table 5. 1: Parameters for simulation 

Parameter Original value  

Atmosphere pressure  1 bar 

Specific heat ratio 1.4 

Thermal exchange coefficient  500 J/mm2/K/s 

External temperature 293.15K 

External force 100N 

Source pressure  5 bar 

Velocity of load (vr) 0.003; 0.006; 0.01; 0.015; 0.02; 0.03; 

0.05; 0.1; 0.15; 0.2; 0.25 m/s 

 



122 
 

 In this calculation, due to constant velocity, the inertia force is ignored, Fef is the 

external force, F1=P1A and F2=P2(A-a) in which A, a are the areas of the piston and 

rod, P1 and P2 are the air pressure in chamber as denoted in Fig. 5.5, which are directly 

measured by two pressure sensors.  

 Then, GA including three operations: reproduction, crossover and mutation as 

shown in Fig. 3.9 in chapter 3, which is employed to determine optimal values of the 

friction model given in Eq. (5.8). This work aims to minimize the cost function 

expressed by Eq. (5.10). As observed in Fig. 5.6, after 30 iterations, the cost function 

converges to zero.  

   21

2
  msf

i i
sfJ F F               (5.10) 

in which Fmsf is the friction force measured at ith constant velocity, Fsf is the friction 

force calculated by Eq. (5.9). The best values of the friction model are given in the 

table 5.2. 

 
Fig. 5.6. The value of cost function with respect to iteration 
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Table 5.2: Values of friction force model 

Parameters Extending  Retracting  

Fc 4.338 -3.904 

Fst 11.655 -9.906 

vs 0.4961 -0.372 

 23.7 23.356 

ns 0.681 0.681 

 Fig. 5.7 shows the friction force curve of the pneumatic cylinder model in which the 

solid line denotes the identified curve for extending stroke whilst the reverse stroke, 

that is the retracting, is exhibited by the dashed line. It is noteworthy to see that the 

identified results match well with the simulated ones marked by the square and circle 

points according to the extending and retracting stroke, respectively. The friction force 

in the extending stroke is larger than in the retracting one. This model will be used to 

analyze the complex responses in section 5.8.2. 

 

Fig. 5.7 Steady-state friction force characteristic. 
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5.3. Stiffness of the modified model 

 

Fig. 5.8. (a) Schematic diagram of the QSAVIM using PC composed by the LBM and 

SCM; (b) Specific states of the QSAVIM using PC 
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 Based on the 3D model shown in Fig. 5.1, the schematic diagram of the QSAVIM 

using PC is presented in Fig. 5.8(a). The working principle of this model is the same as 

that of the model presented in chapter 4. Really, during the operation of the system, it 

also spends three states as shown in Fig.5.8(b) including the undeformed, desirable 

equilibrium and arbitrary position. Among them, only at the undeformed state, the air 

in the cylinders 1 and 2 is not compressed, meaning that no force is generated by the 

LBM and SCM. The same as in chapter 4, the desirable static equilibrium position 

(DSEP) is determined as the load plate is loaded until the centers of semicircular cam 

and roller are on the same horizontal line. At this state, the vertical force which acts on 

the load plate is only caused by the load bearing structure, whilst the arbitrary state is 

determined when the load plate moves away from the DSEP a distance u (relative 

coordinate), at this position, the load plate will be acted by two vertical forces 

generated by both the LBM and SCM. Ho is also called the vertical static deformation. 

 In the same way of chapter 4, considering the load plate moves down away from the 

initial position an amount of L as shown in Fig. 4.9 (b), each end of cylinder 1 and 

cylinder 2 moves horizontally to be x1 and x2 given by Eq. (4.18). By applying 

Eq.(5.4), the volumes (Vcy) of the cylinder 1 and 2 are determined by Eq. (5.11). 

Hereafter, it is noted that subscripts “1” and “2” present for the pneumatic springs 1 

and 2, respectively. 

  

1 1 1 1

2 2 2 2

( )

( )

cy

cy

V A h x

V A h x

 

 
                          (5.11) 

 Using Eq.(4.18) and (4.27), Eq.(5.11) can be rewritten as: 

  1 1 1 0( 2( ) tan )  cyV A h H u                           (5.12) 

  
2 2 2 2

2 2 2 0( 2( ( ) ( ) ))cyV A h R r u R r H                      (5.13) 

 Applying Eq. (5.7), the pressure in cylinder 1 and 2 is expressed as below: 
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  01
1 1

01 1 12 tan 2 tan 
 

    

n

e
s so

e o

V
P P

V A H A u

                         

(5.14)

 
  

   
02

2 2 2 22 2
02 2 22 2

 
 
       

n

e
s so

e o

V
P P

V A R r H A R r u
           (5.15) 

in which 01 1 1 1 02 2 2 2;  Ve ac e acV A h V A h V      

 The pressure Pwh of the pneumatic cylinder at the equilibrium position is determined 

by substituting u=0 in Eq. (5.14 and 5.15) as following: 

  01
1 1

01 12 tan

n

e
wh so

e o

V
P P

V A H 
 

   
                     (5.16) 

  
   

02
2 2 2 2

02 2 22 2

n

e
wh so

e o

V
P P

V A R r H A R r

 
 
      

                  (5.17) 

 In addition, the force of the cylinder generated by compressed air (Fair) is: 

    air s atmF P P A                                   (5.18) 

where Patm is absolute ambient pressure in Pa,  

 Based on Eq. (4.23), the vertical resultant force acting on the load plate can be 

rewritten shortly as below    

  s LBM SCMF F F                                       (5.19) 

where FLBM and FSCM are the restoring forces of the load bearing mechanism and the 

stiffness correcting one, respectively, and defined by Eq. (5.20-5.21)  

  
 12 tan LBM airF F                    (5.20) 

  2 2 2

(H )
2

(R r) (H )




  
o

SCM air

o

L
F F

L
              (5.21) 

 Substituting Eq. (5.18) into Eqs. (5.20 & 5.21), we have: 
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   1 12 tanLBM s atmF A P P                            (5.22) 

   
 

2 2 2 2
2SCM s atm

u
F A P P

R ur
 


              (5.23) 

 By introducing the dimensionless parameters as below: 

  

01 022
01 02

1 1 1 1

1 2 2 s
1 2 s

01 02 1 1 1 1 1 1 1
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     
   
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o atm e e
o atm e e

wh

d d SCM whLBM
d d LBM SCM

e e wh wh wh wh

H P V VA u
A H P u V V

A R r P R r A R r A R r

V V F P FF
V V F F F

V V A P A P P A P

 
in which  is called the air pressure ratio. u is the relative displacement of the 

semicircular cam compared with the DSEP given in Eq. (4.27). Vd is the volume of the 

pneumatic cylinder at the desirable static equilibrium position and is determined by: 

  
1 1 1 0

2 2
2 2 2 0

( 2 tan )

( 2( ( ) ))

d

d

V A h H

V A h R r R r H

 

                                    (5.24) 

 Eqs. (5.22-5.23) are recast in dimensionless form as following: 

  01
1

01

ˆ
ˆ ˆ ˆ2 tan

ˆ ˆ ˆ2 tan 2 tan

n

n e
LBM d atm

e o
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F V P

V H u
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(5.26) 

 By substituting Eqs. (5.25-5.26) into Eq. (5.19) then taking differentiation of Eq. 

(5.19) with respect to û, the dynamic stiffness of the proposed model is explained as 

below: 

ˆˆ
ˆ ˆ ˆ

ˆ ˆ
SCMLBM

s LBM SCM

dFdF
K K K

du du
                          (5.27) 
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where ˆ
LBMK and ˆ

SCMK are the dimensionless dynamic stiffness of the LBM and SCM, 

respectively, are determined as following: 

  
 

21 01
1

01

ˆ ˆ
ˆ 4 tan

ˆ ˆ ˆ2 tan 2 tan

n n
d e

LBM n

e o
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(5.29) 

 This analysis reveals the effects of the volume of the auxiliary chamber and the 

pressure of the cylinder on the restoring forces of the load bearing and the stiffness 

corrected mechanisms as expressed by Eqs. (5.25–5.26) and the dynamic stiffness of 

these mechanisms as calculated by Eqs. (5.28–5.29) 

5.4 Stiffness analysis of the LBM and SCM 

 The dynamic stiffness of the LBM is numerically simulated via using the Eq. (5.28) 

for the pressure in the cylinder 1, PS01=1.91 bar and the effective area of cylinder 1 

A1=0.0079m2.  

  Taking into account the LBM without the auxiliary chamber as shown in Fig. 5.9(a) 

(see the notations of curves in upper-right corner panel), it can be seen that the LBM 

has a significant nonlinear characteristic in the stiffness and the stiffness of which is 

reduced as the relative displacement of the isolated object is increased. However, the 

smaller the inclined angle α is, the lower the nonlinearity of the stiffness curve is. If the 

value of α is small enough, the stiffness of the LBM will be nearly unchanged around 

DSEP (u=0), for instance in this case α<20o, but a reduction in the inclined angle 

results in a decrease in the stiffness as seen in the Fig.5.9(b).  
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Fig. 5.9. Effect of the inclined angle on the dynamic stiffness of LBM for 1
ˆ 0acV  : (a) 

α=40 o; (b) α=15 o, 20o, 25 o, 30o 35o (Detailed annotations of the line types given in 

right-corner panel) 

 As with the inclined angle effect, Fig. 5.10 shows us the effects of the volume of the 

auxiliary chamber on the dynamic stiffness curve of the LBM for α=37o. If 1
ˆ 0acV   as 

shown in Fig. 5.10(a), the LBM obtains the biggest stiffness and the stiffness of which 

is a strong nonlinear function with respect to the relative displacement û . In addition, 

it can be noted that there will be a large variation in the stiffness curve for a change in 

value of 1âcV  as depicted in Fig. 5.10(b) herein the values of 1âcV  are arranged from 

small to large value according to stiffness curves from up to down. As observed, 

increasing the volume of the auxiliary chamber will produce a low dynamic stiffness 

and a slow change of stiffness around the desirable static equilibrium position. When 

the value of 1âcV  is larger than 100, the variation of the stiffness of the LBM versus the 
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dimensionless displacement û is almost very small, meaning that the stiffness of the 

LBM is nearly constant around the desirable static equilibrium position. However, if 

the volume of the auxiliary chamber is increased remarkably for instance 1
ˆ 159.01acV  , 

this will cause a difficulty in the practical application of the proposed model.  

 If the inclined angle of the wedge is designed with a small value for instance α=5o, 

the values of 1
ˆ 0;  1.59;  7.95;  15.9acV   for which the curve of the dynamic stiffness of 

the LBM is shown in Fig. 5.11.  Compared with the case of α=37o (showing in Fig. 

5.10 (b)), in this case, the dynamic stiffness of the LBM changes more slowly around 

DSEP and the value and the nonlinearity of the stiffness curve are much lower.  

 

Fig. 5.10. The dynamic stiffness curve of the LBM for α=37o, PS01=1.91 bar: (a) 1
ˆ 0acV  ; 

(b) various values of 
1âcV given in right-corner panel (Noted that the values of 

1âcV  are 

arranged from small to big according to the stiffness curves from up to down, 

respectively)  
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Fig. 5.11.  Dynamic stiffness for α=5o and the various values of 
1âcV  

 Indeed, in order to obtain the constant stiffness around the DSEP, the slope (SL) of 

the stiffness curve at the DSEP given by Eq. (5.30) must be equal to zero. The 

influence of the inclined angle α and volume 1âcV  of the auxiliary chamber on the slope 

of the dynamic stiffness at the DSEP are shown in Fig. 5.12. Once again, it can be seen 

that slope of dynamic stiffness curve of the LBM is large for a large value of α and a 

small value of 1âcV . The slope is fallen as there is a reduction in the value of α or in 

increase in the value of 1âcV .     
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Fig. 5.12. The influence of the inclined angle α and the auxiliary chamber volume 1âcV

of the auxiliary chamber on the slope of the dynamic stiffness curve at the DSEP 
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Fig.5.13 Influence of the auxiliary chamber volume 2âcV  of the SCM on the dynamic 

stiffness ˆ
SCMK  for PS01=1.55 bar, PS02=1.45 bar, A2=0.0079 m2, 01

ˆ 33.7eV  ; (a) 2
ˆ 0 4acV   ; (b) 

2
ˆ 5 10acV    

Next, the influences of the auxiliary chamber volume 2
ˆ( )acV  of the SCM on the 

stiffness of the stiffness corrected mechanism are investigated by using the Eq. (5.29) 

for PS01=1.55 bar, PS02=1.45 bar, A2=0.0079m2, 01
ˆ 33.7eV  and 2âcV  changed from 0 to 

10. As shown in Fig. 5.13, it can be seen that, the dynamic stiffness of the SCM is 

symmetric around the DSEP and reaches the extremum at this position. The value of 

extremum is minimum as 2
ˆ 0acV   and is increased according to the growth of the 

auxiliary chamber volume of the SCM.  Besides, around the DSEP, the shape of 

stiffness curve can be a convex or concave parabola that depends on the value of 2âcV . 

Indeed, in this case if the value of 2âcV  is smaller than approximately 7, the dynamic 

û
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ˆ SC
M

K

2âcV û
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stiffness of the SCM will be a concave curve and may obtain the negative value around 

the DSEP but after 7, it will become a convex parabola. 

 In order to determine the condition for which the transmission between the concave 

and convex curve occurs, the Eq. (5.29) can be approximated by expanding the power 

series around the DSEP  ˆ 0u as following: 

  
2

1 2
ˆ ˆ ˆ ˆ( )ap

SCM oK a a u a u O u                           (5.31) 

where  ˆ ap
SCMK  is the approximate stiffness of the SCM 
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This is a second-order equation, with a1=0, this confirms that the dynamic stiffness 

curve of the SCM is symmetric around the equilibrium position. In addition, to obtain 

the concave curve, the coefficient of the order 
2û  must be larger than zero as given by 

the condition Eq. (5.33) 
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 As shown in Fig. 5.14, the coefficient of a2 will be diminished as the dimensionless 

volume 
2âcV of the auxiliary chamber of the SCM is increased. To plot this curve, 

exception of 2âcV  the other parameters of the system are the same as in Fig. 5.13. It is 

interesting to note that as the value of 2âcV is in the region from 0 to approximate 7, the 

value of a2 is positive. This leads the dynamic stiffness of the SCM to be a concave 
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parabola but out of this region, the stiffness curve is convex due to a2<0. These results 

are confirmed in Fig. 5.15, seeing the detailed annotation of the types of lines and 

chosen parameters in upper panel of the figure. It is observed that around the DSEP, 

the dynamic stiffness curves of the SCM are concave as 2
ˆ 3.18; 4.77acV   and convex one 

as 2
ˆ 7.48; 8.05acV  .  

 
Fig. 5.14. Domain of the concave and convex curve versus 2âcV and the same other 

parameters as in Fig. 5.13 

 
Fig.5.15. Dynamic stiffness curves of the SCM for various values of 

2âcV , the same 

other parameters as in Fig. 5.13 (Detailed annotation of line types and chosen 

parameters are presented in upper panel). 
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 To further illustrate the effects of 2âcV and the pressure PS02 in the pneumatic spring 2 

on the condition Eq. (5.33), the numerical calculation is realized for PS02=15 bar,

ˆ 0 1.2A   and 2
ˆ 0acV   as exhibited in Fig. 5.16(a). It can be seen that the value of a2 is 

always positive for any value of Ps021, indicating that the SCM achieves the concave 

stiffness curve. In the case of 2
ˆ 0acV  , the region of 2âcV  in which the value of a2 is 

positive depends on the pressure PS02. This is clearly observed in Fig. 5.16(b-c) that the 

area of the 2âcV  having a2>0 is reduced for an increase in the pressure PS02. 

 
Fig. 5.16. By numerical calculation of Eq. (5.33): (a) surface of coefficient a2 for 

PS02=15 bar, ˆ 0 1.2A  and 2
ˆ 0acV  ; (b) Effect of PS02 and 2âcV  on the coefficient of a2 for 

PS02=15 bar and 2
ˆ 0 10acV   ; (c) the sections cut by PS02=1, 2 and 3 bar (the notations of 

various type of lines are given in sub-panel). 
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 In addition, in order to comprehensively analyze the characteristic of the dynamic 

stiffness of the SCM, the effects of the effective area and the pressure PS02 of the 

pneumatic cylinder 2 are taken into account. Firstly, the effective area is increased to 

0.031m2, the other parameters are kept as in Fig. 5.13. The shape of the dynamic 

stiffness curve of the SCM is not changed as shown in Fig. 5.17. However, the 

comparing between Figs. 5.13 and 5.17, it can be seen that with a large value of the 

effective area A2, the dynamic stiffness of the SCM can obtain the lower value. In this 

case, the SCM offers a minimum stiffness value at the DSEP when the value of 2âcV is 

smaller than approximately 21.6. The second case is shown in Fig. 5.18 for PS02 =1.65 

bar but the other parameters are kept as in Fig. 5.17. This result is that the form of the 

dynamic stiffness surface is also unchanged but the dynamic stiffness of the SCM is 

reduced in accordance with the increase in the pressure PS02. Besides, to obtain the 

concave curve, the volume of 2âcV  is shrunk from 21.6 (for PS02=1.45 bar) to 18 (for 

PS02=1.65 bar) as shown in Fig. 5.19.  

 

Fig. 5.17. Influence of the auxiliary chamber volume 2âcV  of the SCM on the dynamic 

stiffness for effective area A2=0.031 m2, the same other parameters as in Fig. 5.13: (a) 

2
ˆ 0 15acV   , (b) 2

ˆ 16 35acV    
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Fig. 5.18.  Influence of the auxiliary chamber volume 2âcV  of the SCM on the dynamic 

stiffness for PS02=1.65 bar, the same other parameters as in Fig. 5.17: (a) 2
ˆ 0 15acV   , (b) 

2
ˆ 16 35acV    

  
Fig. 5.19. Plot of coefficient a2 versus 2âcV  for the effective area A2=0.031m2 and 

PS02=1.45 and 1.65 bar 

5.5 Stiffness analysis of the modified model 

 In order to simplify the dynamic analysis in the next section, the restoring force 

given by Eq. (5.19) can be expressed approximately (Fap) by expanding Taylor series 

around the DSEP (u=0) as below: 
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  2 3 4 5 6
1 2 3 4 5 ( )      oap F au a u a u a uF a u u                   (5.34) 

herein,  
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Fig. 5.20. (a) Comparison between of the original (solid line) and 5th - order 

approximated (dot line) curve of the elastic force; (b) The error percentage between the 

exact solution and approximation one 

 The original elastic force given by Eq. (5.19) and its approximated form expressed 

by Eq. (5.34) are compared as in Fig. 5.20(a). The former is denoted by the solid line 

while the latter is drawn by the dot line. It is interesting to see that the curve of Eq. 
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(5.19) approximated to 5th - order through expanding Taylor series is in good 

agreement with the other. Furthermore, the error percentage of the approximated curve 

is lower than 4% compared with the exact solution as shown in Fig. 5.20(b). As 

observed, in the neighborhood of the equilibrium position (u=0), the error is extremely 

small but it will be grown as it is moved far away from the equilibrium position, 

meaning that the 5th - order polynomial is suitable for small amplitude oscillation. This 

approximated solution will be considered to analyze the primary resonance response of 

the proposed system. 

 Fig. 5.21 (a) shows the dynamic stiffness surface in the space 1
ˆ ˆˆ, ,ac sV u K  in which the 

pressure ratio µ is 1.83 while other parameters including 1 2
ˆ ˆ1.875;  0.248cy cyV V  . It 

revealed that the stiffness of the QSAVIM using PC is strongly affected by the 

auxiliary chamber volume Vac1 of the load bearing mechanism. Reducing the value of 

Vac1 will increase the value of the system stiffness. Simultaneously, the asymmetric 

level of the stiffness curve around the equilibrium position is also developed. This is 

seen clearly in Fig.5.21(b) created by cutting sections at 1
ˆ 7.892,  13.153, 26.306acV  (types 

of lines are presented in the top-right corner panel). Furthermore, because of the 

asymmetry of the stiffness curve, the system cannot achieve the lowest stiffness at the 

equilibrium position (u=0). As observed, for the 1st value of the dimensionless 

auxiliary chamber volume, the position defined by ˆlsu at which the stiffness is to 

achieve the lowest value is approximated 0.084 and the value of ˆlsu can be reduced to 

0.034 and 0.009 as the dimensionless volume of the auxiliary chamber is grown to 

13.153 and 26.306, respectively.   

 The lowest stiffness position can be predicted by differentiating Eq. (5.34) to 

second-order versus the displacement and then equals zero as expressed in Eq. (5.36). 

It can be seen that this position will be asymptotic to the DSEP as when the auxiliary 

chamber volume 
1âcV is increased as shown in Fig. 5.22. 
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  2 3
2 3 4 52 6 12 20      0a a u a u a u                  (5.36) 

 Fig. 5.21. (a) The vertical stiffness surface in the space  1
ˆ ˆˆ, ,ac sV u K for pressure ratio 

µ=1.83; (b) The dynamic stiffness curves for different values of dimensionless 
auxiliary chamber volume given in right-top corner panel 

 

Fig. 5.22.  The influence of auxiliary tank volume 1âcV on the minimum stiffness 

position. 

 In addition, from Eq. (5.27) for Pwh1=2 bar, by setting Ks=0, the relationship 

between the pressure ratio and the auxiliary chamber volume for which the pressure in 

cylinder of the SCM will be calculated, is marked in Fig.5.23(a). The pressure ratio 

curve is formed by cutting sections at the various values of the auxiliary chamber 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

 
 
 

N
o

n
-d

im
en

si
o

n 
st

iff
ne

ss

1
ˆ 7.892acV

1

ˆ 13.153
ac

V

1

ˆ 26.306
ac

V

 û
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volume 1âcV  as shown in Fig. 5.23(b) in which the values of 1âcV  and the notation for line 

types are noted in the middle of panel. It can be observed that in the case of 

1
ˆ 34.198,acV at the extremum point A corresponding to the pressure ratio µ=0.905, the 

oscillation system can obtain the quasi-zero stiffness at only one position ˆ 0.008Au   

but µ>0.905, there may exist two positions at which the stiffness is also nearly equal to 

zero such as at point A2 ( ˆ 0.381u ) and point A1( ˆ 0.364u   ) for µ=1.2. It is shown that 

as lessening the volume 1âcV leads to the increase of the pressure ratio. For instance, 

1
ˆ 21.045,  13.153acV and  7.982, the lowest pressure ratios to obtain quasi-zero stiffness 

are 1.096, 1.379 and 1.834 are marked by the extremum point such as B, C and D, 

respectively. The slope of the stiffness curve at points A  ˆ 0.008Au  , B  ˆ 0.021Bu  , C

 ˆ 0.046Cu  , D  ˆ 0.083Du  , is nearly equal to zero as depicted in Fig. 5.23(c) (all 

parameters are the same as in Fig. 5.23(b)), meanwhile other positions (A1, A2, etc.) the 

slope is nonzero, indicating that for the value of µ at extreme points of the pressure 

ratio curve, the dynamic stiffness can be equal to zero and obtains the minimum value 

in the expected working region. This result is also confirmed in Fig. 5.24 (a), herein the 

values of µ and annotation of the line types are given in the top-right corner panel of 

the figure. 

 As mentioned above, it may exist the points at which the stiffness of the QSAVIM 

using PC is quasi-zero but the slope of the stiffness curve is nonzero. For example, for 

µ=1.2, 1
ˆ 34.198acV , the system has quasi-zero stiffness at the position A2 ( ˆ 0.381u ) 

and A1 ( ˆ 0.364u   ) (seen in Fig. 5.23 (b)) but at which the slope of the stiffness 

curve is larger than zero at A2 and smaller than zero at A1 (seen in Fig. 5.23 (c)). The 

result is in area from the position A1 to A2 in which the dynamic stiffness of the 

QSAVIM using a PC is negative as shown by dot line in Fig. 5.24 (b). On the aspect of 

isolation, this case is not suitable for designing an isolated model due to its 

unstableness. Besides, if the pressure ratio is chosen so that its value is smaller than 
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that at the extremum point of the pressure ratio curves, the stiffness of the system is 

always larger than zero as exhibited in the Fig.5.23 (b) herein, the value of µ is chosen 

0.7 (solid line), 0.8 (dashed line) and 0.85 (dash-dot line) while the dimensionless 

value of the auxiliary chamber volume is 34.198. Furthermore, it is interesting to note 

that the region d in which the dynamic stiffness of the QSAVIM using PC is smaller 

than that of the ETVIM is increased according to the increase in the pressure ratio.  

  

Fig. 5.23. (a). The quasi-zero stiffness surface in the space ( 1
ˆ ˆ, ,acV u ); (b). The pressure 

ratio curve for various values of 1âcV ;  
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Fig. 5.24. Stiffness curve for different values of µ given in the panel of figure, the same 

other parameters as in Fig. 5.23: (a) Quasi-zero stiffness at position ( ˆ 0.008u , 0.021 ,

0.046,0.083); (b) Arbitrary stiffness 

5.6 The analysis of equilibrium position  

The static equilibrium position was defined in Eq.(4.32), it can be written in 

dimensionless form as below: 

 1
ˆ ˆ ˆ, , 0   wh s gf u P F F                   (5.37) 

in which the dimensionless restoring force  1 1
ˆ / As s whF F P is determined by substituting 

Eqs. (5.25 - 5.26) into Eq. (5.19), obtaining  
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 To obtain the DSEP, the isolated load (M) is calculated as following: 
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  1
1

2 tan
 wh atm
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M P P
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                     (5.40) 

   

 

Fig. 5.25. (a) Equilibrium surface in space 1
ˆˆ( , , )acu V  (b) Stability curves for 

equilibrium positions created by section plane 1 2 bar.whP   

(Herein 2
1 2 1

ˆˆ ˆ159.01, 0, 0.0079 m , 0.01, ac acV V A A    Pwh2=3.6 bar) 

The equilibrium surface in space with Eq. (5.41) for 2
1 2 1

ˆ ˆ159.01,  0,  0.0079 ,  ac acV V A m

ˆ 0.01 ,A Pwh2=3.6 bar, is shown in Fig. 5.25(a). It can be seen that depending on the 

pressure ratio  and 1whP , the equilibrium points of the QSAVIM using PC may lay on 

the plane having ˆ 0u   or the curved surface. It indicates that the system may exist 
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three or one equilibrium position. In order to further illustrate the stability of the 

equilibrium points, a curve for  1
ˆ ˆ, , 0whf u P   in the plane  ˆ,u   as shown in Fig. 5.25 

(b) is created by the cutting section having Pwh1=2bar. In the shaded region where

 1
ˆ ˆ, , whf u P is positive, out of this region,  1

ˆ ˆ, , whf u P  is negative. It can be seen that the 

number and stability of the equilibrium positions may be varied in accordance with the 

pressure ratio . But its real significance is to display the fact that  at point A (called 

A) is a bifurcation point of the system, at this section, the value of A=1.2. When the 

A, then there is only one stable equilibrium position (called center point) at ˆ 0u 

due to the changing of  1
ˆ ˆ, , whf u P  from positive to negative on passing through this 

equilibrium position. But the value of  is larger than A the system has three equilibria 

including two centers which are on solid curve and an unstable equilibrium position 

(saddle point) lied on dashed line ( ˆ 0u  ).  Furthermore, in this case, around the 

DSEP the QSAVIM using PC can attain the quasi-zero stiffness (solid line) for =A, 

larger stiffness than zero (dashed line) for <A and negative stiffness (dot line) for 

>A as shown in Fig. 5.26. 

 
Fig. 5.26. Quasi-zero stiffness around the DSEP for Pwh1=2 bar and µ=1.1(dashed line), 

1.2 (solid line), 1.3 (dot line) 
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Fig. 5.27. Equilibrium curve of Eq. (5.41) for Pwh1=3.7 bar and 1
ˆ 14.21acV  , the same 

other parameters as in Fig. 5.25. (b) Equilibrium curve enlarged for  8.5, 8.65. 

(The detailed annotation is presented in the upper-left corner of each figure) 

 Next, considering the case of Pwh1=3.7 bar, 1
ˆ 14.21acV  , other parameters are the same 

as in Fig.5.25, the equilibrium curve (  1
ˆ ˆ, , 0whf u P  ) is denoted in Fig. 5.27 (a). The 

region offering  1
ˆ ˆ, , 0whf u P   is shaded meanwhile the non-shaded area is 

representative for  1
ˆ ˆ, , 0whf u P  . In this case, notes that the stability curve for the 

equilibrium points is asymmetric around the DSEP and there exists two bifurcation 

points including A=8.59 and B=8.63 as revealed in Fig. 5.27 (b), an enlarged 

equilibrium curve in the dashed rectangle of Fig. 5.27 (a), seeing the details for the 

notations of the types of lines in the upper-left corner. If the value of is lower than A 
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there exists only one stable equilibrium position at ˆ 0u  , and if the value of  is 

between A and B that would result in two centers at ˆ 0u  and 1ˆ ˆ 0u u  (lying on 

solid line), and one saddle point at 2ˆ ˆ 0u u   (lying on dashed line). If after B, the 

system will offer three equilibrium points including 2 centers at 3ˆ ˆ 0u u  , 4ˆ ˆ 0u u 

(lying on the solid line) and one saddle point at ˆ 0u  corresponding to the dashed line. 

With =A, there are two equilibrium positions including one center at ˆ 0u   marked by 

the filled circle D, and a center-saddle point at ˆ 0u   expressed by the non-filled square 

A. Oppositely, if =B, it will have one center-saddle point at ˆ 0u  denoted by the 

non-filled square B and one center at  ˆ 0u   marked by filled circle C.  

 

Fig. 5.28. (a) Stiffness curve of Eq. (5.27) for Pwh1=3.7 bar, 1
ˆ 14.21acV  and =8.50, 

8.59, 8.63, 8.65. (b)  Stiffness curve enlarged for û-0.05, 0.15 and ˆ
SK  -0.004, 

0.004. (The notation of the various types of lines is presented in the upper panel) 
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 In addition, Fig. 5.28(b) presents the dynamic stiffness of the QSAVIM using PC for 

given values of , seeing the detailed annotation of the types of the lines in upper panel 

of the figure. It reveals that the stiffness curve of the QSAVIM using PC is 

asymmetrical around the DSEP and at center points, the dynamic stiffness of the 

proposed model is positive for instance, at E (=8.5), D (=A), C (=B), F, H 

(=8.65). But with the saddle point, for example, the stiffness is negative at G 

(=8.65). Meanwhile, at bifurcation points A and B (center-saddle point), the dynamic 

stiffness is equal to zero but this equilibrium is unstable because the stiffness may be 

negative as the isolated object is moved away from the center-saddle point. 

5.7. Dynamic analysis 

5.7.1. Frequency-amplitude relation 

 Consider that the absolute displacement of the isolated object (z) due to a harmonic 

force with the amplitude Fe and frequency from the isolated object as shown in Fig. 

5.29. 

  

Fig. 5.29. Simple model of QSAVIM using PC 

 The kinetic energy is given by Eq. (4.38), meanwhile the potential energy (Ep) of the 

approximate restoring force given in Eq. (5.34) can be expressed as: 

M

K Cd
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d
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  115 5

1 10 1 1

 

 


     

  
iL i

oo
p ap o i i

i i

H LH
E F d L F L a a

i i
          (5.41) 

where the relation between the origin of the relative coordinate u and the static 

deformation Ho is denoted in Eq. (4.27), that is oL H u    

 The energy dissipation function (D): 

 21
z

2
 dD C                  (5.42) 

 The generalized force in absolute coordinate of z: 

  eQ f Mg                   (5.43) 

with fe is the harmonic external force 

 The case in which the system attains the DSEP, indicating the weight of the isolated 

object is determined by Eq. (5.40), by using Eq. (4.43), the motion equation of the load 

plate is expressed as following: 

   
5

1

cos 


 
       

 
  i

d o i o e
i

Mz C z F a H L Mg F t               (5.44)                          

 Utilizing Eq. (4.41) in which ze is removed and Eq. (4.27), the dynamic equation Eq. 

(5.44) is rewritten according to the relative coordinate (u) in dimensionless form, we 

obtain: 

   
5

2

' 2 ' os  


     n
n

n

u u u u c               (5.45) 

Herein, some parameters given in this equation are defined as following: 

1
2 1

2
1 0; 0( 2,3,...,5)

;  ;  ;  ;  ; ;  
2



    
  



  

         

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n
d n o e

n n n o
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u t u
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where the number of primes denote the order of differentiation with respect to time-

scaling  

 In order to find the solution in the neighborhood of the equilibrium position ˆ 0u  , 

we let ˆ ˆu x  with  is a small detuning term:  

 
5

4 1 4

2

2 cos     



       n n
n

n

x x x x k                   (5.46) 

herein <<1, 4 5ˆ ;  cos( ) cos( )         x x k                   (5.47)  

 By applying Multi-scale method, the approximated solution of the Eq. (5.46) is 

obtained as following: 

  
2

1 2 3 4 1 1 2 3 4 2 1 2 3 4

3 4 5
3 1 2 3 4 4 1 2 3 4

( , ) ( , , , , ) ( , , , , ) ( , , , , )

              ( , , , , ) ( , , , , ) ... ( )

   

  

  

   
o o o o

o o

x x T T T T T x T T T T T x T T T T T

x T T T T T x T T T T T O
         (5.48) 

in which  ( 0,1, 2,3, 4)i
iT i   . Substituting Eq. (5.48) into Eq. (5.46) and letting 

=1+2 then equating the coefficient of o,1,2,3,4 on both sides of the equation .. 

 

2

1 2
1 1 1 1

2 2 2 3
2 2 1 1 2 1 1 1 2

3 2 2 2 2 4
3 3 1 2 2 1 3 1 2 1 1 1 1 2 2 1 3

4 2
4 4 1 3 2 2

  D 0

  D 2

ˆ  D 2 2 D

  D 2 2 2 2 D 2 3

  D 2 2 2
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          

    

o
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x x

x x D D x x

x x D D x D D x x x x x

x x D D x D D x D D x D D x x x x x x x x

x x D D x D D x D

   
2 2

3 1 4 1 2 1 1 3 1 2 2

2 2 3 5
1 3 1 2 2 2 1 3 1 4 2

2 2 2 2 D D

                      2 2 3 4 cos( )



    

     

       



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D x D D x D D x D D x D x x x

x x x x x x x x x x x k T T (5.49)

 

where ;



n

n
i n

i

D
dT

 i=1,2,3,4; n is the order of the differentiation 

 The general solution of the first equation in Eq. (5.49) is expressed as below: 

     1, 2, 3, 4, 1, 2, 3, 4,
 o oiT iT

ox A T T T T e A T T T T e              (5.50) 

with A  is an unknown complex function and  A is the complex conjugate of A  
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 Substituting Eq. (5.50) into the second equation in Eq. (5.49), we obtain as 

following: 

       2 22 2 2
1 1 1 1 1D 2 2 2        o o o oiT iT iT iT

o x x D Ae i A e AA A e D Ae i           (5.51) 

 In order to obtain the periodic solution of Eq. (5.51), imaginary terms in the right 

side of Eq. (5.51) must be zero. Namely, 

  1 1 2 3 40;  0 ( , , )   D A D A A T T T               (5.52) 

 Hence, the solution of Eq. (5.51) is: 

  
2 2

2 21 1
1 12

3 3

    o oiT iTA A
x e AA e               (5.53) 

 Substituting ˆox  and 1̂x  into the third equation in Eq. (5.49), we obtain: 

2 2 2 2
3 32 2 3 31 1 1

2 2 2 2 2 2

2 2
21

2 2

10 2 2
D 2 3

3 3 3

10
             2 3

3

    

 





     
                   

 
    
 

o o o

o

iT iT iT
o

iT

A A
x x D Ai A A e A e A e

AA
D Ai AA e

   
(5.54)

 

 As above, the secular terms in Eq. (5.54) will be ignored if the coefficient of oiTe or

oiTe are equal to zero, we have: 

  
2 2

21
2 2

10
2 3

3

  
A A

D Ai A A  or
2 2

21
2 2

10
2 3

3

   
AA

D Ai AA           (5.55) 

 By letting 

   1 1
,  

2 2
  i iA ae A ae                (5.56) 

with a and β are real, then separating the real and imaginary parts, the differential 

equation for amplitude and frequency of Eqs. (5.52, 5.55) are expressed as below: 
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2 1
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8 24
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a a
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               (5.57) 

 The solution of Eq. (5.54) as following: 

  

2 2
3 33 31 2 1 2

2

2 2 2 2

24 8 24 8
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(5.58)
 

 Next, substituting Eqs. (5.50, 5.53, 5.58) into the 4th order equation in Eq.(5.49) is 

rewritten as following: 

3 2 3
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3 3 3 1 1 2 3

3 3
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     (5.59) 

 The periodic solution of Eq. (5.59) can be achieved by: 

  3 3 30; 0 & 0   D A D a aD               (5.60)

 Eqs. (5.52, 5.60) reveal that the parameter A  is independent on the scale time T1 and 

T3. The solution 3x is expressed as following: 
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3 2 3
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(5.61) 

 Similarly, substituting Eqs. (5.53, 5.58, 5.61) in the last equation in Eq. (5.49), then 

the coefficient of oiTe is set to zero as following:  

2

22 3
3 2 3 231 2 1 2 1

4 1

2
3 2 3 2 3 21 31 2

2 4

2810 3 26 1172
2 2

6 2 12 216 3
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 
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


         (5.62) 

 By taking differentiation of 1

2
 iA ae versus scale time T4, the real and imaginary 

parts of Eq. (5.62) are obtained as following: 
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 
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D a a K T
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    (5.63) 

 In addition, the differentiation of a and β with respect to dimensionless time  is 

presented as below: 
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            (5.64) 

 From Eqs. (5.57, 5.60, 5.63), Eq. (5.64) is rewritten as following: 
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      (5.64) 

 Substituting Eq. (5.56) into (5.50) and then, the obtained result is substituted into 

Eq. (5.48), the primary solution of Eq. (5.46) is expressed as following: 

  cos( ) ( )    x a                (5.65) 

 Recalling ˆ ˆu x , the general solution of Eq. (5.45) 

  ˆ cos( ) ( )    uu a             (5.66) 

in which  ua a   

 Letting 2T    , and combining Eq. (5.47), Eq. (5.64) is expressed with respect 

to ua as below: 

  

'
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1
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2
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          (5.67) 

with 
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G
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      (5.68) 

 As the amplitude and phase are unchanged versus time, the steady state motion will 

occur, meaning that 

  
3 5

1 2 1 2
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2
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( , ) ( , )
2

 
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u

u u u

a

G a F a a
          (5.69) 

 Through 2 2sin ( ) cos ( ) 1   , the sum of two sides of Eq. (5.69), the frequency-

response relationship of Eq. (5.45) is obtained as following: 

     22 3 5
1 2 1 2

1
( , ) ( , )

4
        u u u ua G a F a a                     (5.70) 

 From Eq. (5.70), we have: 
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                    (5.71) 

 The peak amplitude ( ûpa ) and frequency (p) are calculated as below: 
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5.7.2. Stability of the steady state solution 

 Considering & uo uoa  along with a set of steady state solutions and its neighborhood 

are determined by introducing small variations 1 1& u ua as following: 

  
1

1  
 

  

u uo u

uo u

a a a
                (5.73) 

 To accomplish the stable analysis, Eq. (5.67) is rewritten as 
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5.74) 

 Based on Routh-Hurwitz Criterion for nonlinear system, the stability of the steady 

state solution depending on the eigenvalues  is determined as below: 
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 The unstable region of the steady state motion above is obtained as following  
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5.7.3. Transmissibility for force excitation 

 The case of the QSAVIM using PC is subjected to a harmonic forcing excitation 

fe=Fecos(t), through the LBM, SCM and an air damping, the force is transmitted to 

the base can be written in dimensionless form as below: 
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t n

n

F u u a                           (5.77) 



157 
 

 It reveals that the transmitted force depends on the velocity and position of the load 

plate given in Eq. (5.66). This force may be rewritten as: 

3 5
3 53 7

2 sin( ) cos( )
4 8

     
 

          
 

u u
t u u

a a
F a a        (5.78) 

 Applying Eq. (4.72), Eq. (5.78) can be rewritten as following: 
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where 
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 The maximum force is transmitted to the base being: 
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 The transmissibility for forcing excitation is defined as below: 
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F
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herein from Eq. (5.45) the non-dimensional magnitude of the excited force 1eF   

5.8. Numerical simulation 

5.8.1. Influence of parameters on the force transmitted curve 

 In this section, the effects of the pressure ratio and volume of auxiliary chamber on 

the force transmissibility of the QSAVIM using PC are investigated. Firstly, the 

pressure ratio will be studied meanwhile a set of parameters of the isolation system 

comprising of 1
ˆ ˆ0.1;  0.16;  13.153;   acA V  ˆ 0.53oH is given, simultaneously at the 

equilibrium position, the pressure Pwh1 of the LBM is set at the value of 1.85 bar for 

which the weight of the isolated load is 122.41 kg. As observed in Fig. 5.30 the 

dynamic stiffness (denoted by the solid line) of the QSAVIM using a PC for various 

values of µ within 1.350 to 1.377 is always smaller than that of the ETVIM (exhibited 

by the dashed line) when the position of the load plate is in the working region (

ˆˆ ou H ). Especially, µ=1.379, the minimum stiffness of the QSAVIM using PC is 

nearly equal to zero and it will be increased according to reduction in the pressure 

ratio. The result is the force transmitted curves shown in Fig. 5.31 (the detailed 

annotation of the type of lines and the chosen values of µ are presented in the left-

upper corner panel of the figure). It can be argued that the nonlinearity of the proposed 

model bends the force transmitted curves to the left or the right depending on the 

pressure ratio. In the case of µ=1.379, the curve is bended to the left, indicating that 

this is the case of the soft nonlinear system. Reducing the pressure ratio will lead to 

reduce the soft nonlinearity even to become the hard nonlinearity. As observed, the 

amplitude-frequency curve is bended to the right for µ=1.360. However, the bending 

level of the response curve to the right may be lessened as there is a lessening in the 

pressure ratio such as µ=1.360, µ=1.350 and even trends no bending for µ=0 as seen 

in Fig. 5.31. This is evident because the pressure of the stiffness corrected mechanism 

will be reduced according to the reduction in the value of µ, meaning that the effects of 
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this mechanism on the dynamic stiffness of the QSAVIM using PC become lightly and 

hence, the peak amplitude is increased. Furthermore, the increase of the pressure ratio 

will broaden the isolation region of the hardening system toward the low frequency as 

plotted in Fig. 5.32. On the other hand, the comparison between the proposed system 

and the ETVIM in which the SCM is removed, it is noteworthy to observe that the 

suppression of the force transmissibility from the load plate to the base of the 

QSAVIM using PC is better than the ETVIM, meaning that isolation region and 

vibration attenuated ratio of the former is larger than those of latter.  

  
Fig. 5.30. The dynamic stiffness curve of the QSAVIM using PC for 

1
ˆ ˆ ˆ0.1; 0.16; 13.153; 0.53,    ac oA V H Pwh1=1.85 bar and different values of µ 
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Fig. 5.31. Force transmissibility of the QSAVIM using PC for various values of µ and 

the same other parameters as in Fig. 5.30 

    

Fig.5.32. Comparing force transmissibility of the QSAVIM using PC and ETVIM for 

various values of µ and the same other parameters as in Fig. 5.30 (the details of types 

of lines are presented in panel) 

 As analyzed above, the amplitude-frequency response of the proposed system can be 

soft or hard depending on the peak frequency p. Indeed, this value is negative 

corresponding to the response curve bending to the left. Oppositely, the bending to the 
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right is appeared for the positive value of p. Fig. 5.33 shows the influence of the 

pressure ratio on the peak frequency of the QSAVIM using PC for the same parameters 

as in Fig. 5.30. It is interesting to see that if the pressure ratio is larger than 1.376, the 

value of p is negative, indicating that the response curve is bended to the left as 

confirmed in Fig. 5.31 meanwhile the bending of the curve to the right is occurred for 

µ<1.376 due to p>0. 

 

Fig.5.33. Effect of the pressure ratio on the peak frequency p of the QSAVIM using 

PC for the same parameters as in Fig.5.30 

 The relation of the pressure ratio and volume of the auxiliary chamber of the load 

bearing mechanism for which the minimum stiffness of the QSAVIM using PC will be 

nearly equal to zero in the working region is determined by setting ˆ
sK =0 in Eq. (5.27) 

while the other parameters are the same as in the first case. The result is depicted in 

Fig. 5.34, it can be seen that the pressure ratio is reduced in accordance with the 

increase in the volume. Namely, if the dimensionless volume of the auxiliary chamber 

of the load bearing mechanism is set at the values 7.892; 14.460; 18.814; 24.992; 

39.453; 47.358, the dynamic stiffness curve is plotted in Fig. 5.35. It is noteworthy to 

see that the asymmetry of the system around the equilibrium position is reduced 

according to the increase in the volume of the auxiliary tank, indicating that the 
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position at which the dynamic stiffness is quasi-zero moves towards the equilibrium 

position.       

  

Fig.5.34. The relation of pressure ratio versus the auxiliary chamber volume, the same 

other parameters as in the first case 

  

Fig.5.35. The dynamic stiffness curve of the QSAVIM using PC for the different 

values of the auxiliary chamber volume as annotated in figure meanwhile the pressure 

ratio is calculated as in Fig.5.30. 
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Fig.5.36. The peak frequency curve (a) and peak amplitude curve (b) of the QSAVIM 

using PC for the same parameters as in Fig.5.35 

 In this case, the peak frequency and amplitude curves with respect to the auxiliary 

chamber volume of the QSAVIM using PC having the dynamic stiffness curves shown 

in Fig.5.35 are presented in Fig.5.36. It can be seen that if the dimensionless volume of 

the auxiliary chamber is larger than 21.24 and smaller than 43.85 the value of p is 

positive but this value is negative for the volume of auxiliary chamber is out of this 

range as shown in Fig.5.36(a). Besides, increasing the auxiliary chamber volume will 

lead to a lessening in the peak amplitude as observed in Fig.5.36(b) while this may be 

no appearance of the peak frequency. For instance, with 1
ˆ 13.5acV  the value of p is 

around -10.5 but if 1
ˆ 13.6acV this value is nearly equal to -21. Furthermore, as the 

dimensionless volume of the auxiliary chamber is changed from 43.83 (at point A) to 

43.88 (at point B) the value of p is changed suddenly from positive to negative, 

simultaneously, the peak amplitude is decreased remarkably. In addition, it is essential 

to note that increasing the auxiliary chamber volume will extend the region isolation 

toward low frequency as shown in Fig. 5.37. This result proves that improving the 

symmetric of the stiffness curve will increase the effectiveness of suppressing the force 

transmissibility from the load plate to the base. 

10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

10 15 20 25 30 35 40 45 50
-40

-30

-20

-10

0

10

13.5 13.6 13.7
-21

-18

-15

-12

-9

1âcV
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Fig. 5.37. Force transmissibility of the QSAVIM using PC for various values of 1âcV  

including 7.89; 14.46, 18.41 and 24.99; 39.45; the same other parameters as in 

Fig.5.36.  

 The effect of nonlinearity in dynamic characteristic, the amplitude-frequency curve 

can be bended as analyzed above, which indicates the appearance of the down (JD) and 

up (JU) jump frequency as expressed in Fig.5.38. Herein, the values of µ and 1âcV are 

given in left-top corner panel, the other parameters are the same as in Fig.5.35. The 

points on the response curve lying between JD and JU are unstable solutions because 

these points are in the unstable region calculated by Eq. (5.76). When the down jump 

frequency which is also the peak frequency p moves closely to zero, the phenomenon 

of the frequency jump may be neglected, meaning that all points on the amplitude-

frequency curve are stable as numerically simulated by the dashed line in Fig.5.39. 

Likewise, the stable branches of the proposed model with various values of µ and 1âcV  

are denoted in Figs. 5.32 and 5.37. The detailed annotation for line types is presented in 

the lower-left and upper-left corner of these figures.     
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Fig.5.38. The stability of the response curve 

5.8.2. Complex dynamic analysis.  

 Because of the nonlinear dynamic characteristic as well as the existing of the 

relative sliding between the piston and cylinder, thus it is necessary to analyze the 

complex behavior of the proposed system.   

 
Fig. 5.39. Sliding friction under various states 
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 As known, as there is a relative sliding between piston and cylinder, it will occur the 

sliding friction as shown in Fig. 5.39. Herein, it is noteworthy that Fsf-c and Fsf-p are the 

frictional forces inserting the cylinder and piston and the denotation of “1” and “2” are 

representation of the cylinders 1 and 2, respectively. We have: 

1 1 1

2 2 2

( )

( )

 

 

 

 




sf c sf p sf

sf c sf p sf

F F F sign u

F F F sign uu
                  (5.83)  

in which Fsf is calculated by Eq. (5.8) 

 From this analysis, Fig. 5.40 shows the free body diagram of the system which is 

subjected to the sliding friction and excited force fe=Fecos(t) with the force amplitude 

of Fe and frequency of  

 Consider virtual displacement u, the virtual works done by these forces become 

   1 1 1 2 2 2             sf p sf p sf p sf p eW F F x F F x Mg u f u                     (5.84) 

herein, x1 and x2 are the corresponding virtual displacements of the piston 1 and 2. 

These are the same as the virtual displacements of the center of the rollers 2 and 3 as 

defined in Fig. 4.9(b). 

 Applying Eq. (4.22), (4.27) and (5.83), Eq. (5.84) can be recast, by 

 
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R r

u
W F i uu F i u Mg f u

u
           (5.85) 

 Accordingly, the generalized force in the direction of the relative coordinate u is 

obtained as below: 
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Fig. 5.40. External forces acting on the system  

 The potential energy: 
0



 
L

e SP F d L                  (5.87) 

with Fs is determined by Eq. (5.19) 

 The kinetic energy and dissipation function are the same as in Eq. (4.38) and (5.42), 

respectively.  

 Now, substituting Eqs. (4.38, 5.42, 5.86, 5.87) into Eq. (4.43), we obtain the 

dynamic equation, by 

 
 1 2 2 2
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R
i uu Mg

r
F t

u
  

(5.88) 

 Or through Eq. (4.41) that ze is deleted, the dynamic equation is written in relative 

coordinate u as: 
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(5.89) 

 
Fig. 5.41. Multi-scale method compared with numerical integration 

 First of all, the amplitude-frequency curves obtained by Multi-scale method and 

fourth-order Runge-Kutta algorithm are compared as shown in Fig. 5.41. Herein, the 

frequency of the excited force is swept up slowly from 0 to 10 rad/s (denoted by the 

dashed line). In contract to reducing slowly frequency 10 rad/s to 0, the amplitude-

frequency curve is exhibited by the dot line. It can be seen that although at the down 

jump point, there is a difference between two methods due to approximate error and 

exiting sliding friction between the piston and cylinder, two curves are still in good 

agreement.  

 Next, the complex behavior of the proposed system will be investigated through the 

numerical integration for Eq. (5.89) using a fourth-order Runge-Kutta algorithm with 

the various initial conditions including velocity and position. The bifurcation diagram 

of Eq. (5.89) for 1
ˆ 7.89,acV  µ=1.834,  changed from 1 to 10 rad/s and the same other 

parameters as in Fig.5.30. The value of u is determined by using Poincare map with the 

period T=2/. The simulated result is plotted in Fig. 5.42. It can be seen that if the 
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initial condition is zero for both of the position and velocity, the dynamic response of 

the system (denoted by filled circles) will be period-2 oscillation as the excited 

frequency is within 2.2-2.6 rad/s but out of this range the solution is period-1 periodic. 

Meanwhile, the response marked by squares is realized by sweeping the parameter  

from 1 to 10 rad/s, for which the initial position and velocity are set at zero only for the 

first parameter  and the final state of the system will be considered as the initial 

condition for the next value of . In this case, the oscillation transformed from period-

1 to period-3 periodic is occurred with  around of 4 and 8 rad/s. Hence, it revealed 

from this figure that depending on the initial condition the dynamic response of the 

system can be bifurcated at A (1.9 rad/s), B (2.8 rad/s) and C (4 rad/s), meaning that 

the parameter <1.9, there only exists a period-1 solution, but 1.9<<2.8 two cases for 

two period-1 or period-2 solutions may be appeared. But if the parameter is within B 

and C, there are two cases for period-1 periodic oscillation, after C the dynamic 

behavior of the system can be period-1 or period-3 solution. 

 

Fig.5.42. Bifurcation diagram of Eq. (5.89) for 1
ˆ 7.89,acV µ=1.834,  changed from 1 

to 10 rad/s  

 Furthermore, in order to obtain the solution of the dynamic response, the family of 

the initial conditions named the attractor-basin phase portrait affecting on the dynamic 
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response will be detected in three cases following. In the 1st study case, the parameter 

 is taken account into at value of 2.4 rad/s, simultaneously other parameters are set as 

in Fig.5.42. As shown in Fig.5.42, it can be seen that it may exist the period-1 or 

period-2 solution depending on the initial condition. It is interesting to see that in the 

attraction basin depicted in Fig.5.43, the attractor region of the period-1 oscillation is 

greater than that of the period-2 one. This means that the ability to obtain period-1 

steady dynamic response is higher. Additionally, the vibration ability of the period-1 

oscillation plotted in Fig. 5.44 (b) is higher than that of period-2 one depicted in 

Fig.5.44 (a) in which the initial position and velocity of the first solution is zero but the 

second one is obtained for 20 mm and 0.2 m/s, o ou u  meanwhile the fixed points 

calculated by Poincare section are annotated by filled circles.      

 

Fig.5.43. Attractor-basin phase portrait for =2.4 rad/s, other parameters set as in 

Fig.5.42 

ou
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Fig.5.44. Phase orbit of Eq. (5.89) for =2.4 rad/s and 0 and 0o ou u  (a) 

20 mm and 0.2 m/s o ou u (b) 

 

Fig. 5.45. Attraction basin for =6rad/s and the same other parameters as in Fig. 5.42 
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occurred is narrower than that in the 1st case. Furthermore, in this case as shown in 

Fig.5.46 (the detailed annotation of line types is presented in right-top corner panel of 

each figure), the vibration level of the period-1 solution (Fig. 5.46(b)) is lower than that 

of period-3 one (Fig. 5.46(a)).  Both solutions also revealed that the vibration of the 

system occurs at a position which is drifted away from the equilibrium position (u=0). 

 

Fig. 5.46. The phase orbits of the system for 1
ˆ 7.89;  26.30acV  and 

20 mm and 0.05 m/s o ou u (a); 0 and 0o ou u  (b) 

 In the 3rd study case, the dimensionless volume of the auxiliary chamber is increased 

to the value of 26.30 but other parameters and frequency are the same as in the 2nd 

case. To guarantee that the minimum stiffness is nearly zero, the pressure ratio is 

calculated at value of 0.997. The result is that the area of the period-1 solution is 

expanded compared with the second case as shown in Fig.5.47. Similar to the 2nd case, 

the amplitude and velocity of the period-1 solution are reduced compared with the 

period-3 oscillation as shown in Fig.5.46 in which the phase orbits are drawn by the 

dashed line meanwhile the fixed point is annotated by square. This case confirms that 

the position at which the load plate oscillates around was moved to the equilibrium 

position.      
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Fig.5.47. Attraction basin for =6rad/s, µ=0.997 and 1
ˆ 26.30acV the same other 

parameters as in Fig.5.42 
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Fig. 5. 48. Flow chart for designing the QSAVIM using PC  

K̂DSEP

ˆ ˆ ˆK K ;  0 s DSEP u
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 In summary, from these analysis results, it indicates that the stiffness curve of the 

system is asymmetrical around the DSEP, meaning that the extremum of the stiffness 

curve is not at DSEP. The level of the asymmetry depends on the auxiliary tank 

volume of the LBM. The symmetry of the stiffness curve will be improved according 

to increasing this volume. In addition, the QSAVIM using PC having asymmetrical 

stiffness curve will give the lower isolation effectiveness than the one with 

symmetrical stiffness curve. Thus, as the QSAVIM using PC is designed, the volume 

of the LBM should be selected so that the extremum of the stiffness curve is closed to 

the DSEP. The design procedure is shown in detail in Fig. 5.48 

SUMMARY OF CHAPTER 5 

 This chapter introduced a modified model of QSAVIM in which the pneumatic 

cylinder connecting with an auxiliary tank is introduced as a non-steel elastic element. 

The stiffness of the pneumatic cylinder and sliding frictional force generated by 

relative motion between the cylinder and piston were built and verified through the 

virtual prototyping technology. Following this analysis, the dynamic stiffness of the 

LBM, SCM and QSAVIM using PC was analyzed and numerically simulated. The 

results revealed that the stiffness of the load bearing mechanism is an asymmetrical 

curve around the DSEP, whose asymmetrical level will be reduced according to the 

increase in the volume of the auxiliary chamber. Oppositely, the stiffness curve of the 

stiffness corrected mechanism always has parabolic form with the vertex at the DSEP 

regardless of the volume of the auxiliary tank. However, concave or convex form 

depends on the pressure and volume of air inside the cylinder and auxiliary chamber. 

On the aspect of vibration isolation, the parameters of the system should be calculated 

so that the stiffness curve of the SCM is a concave parabola. Due to connecting 

between LBM and SCM in parallel, resultant stiffness of the QSAVIM using PC is also 

an asymmetrical curve around the DSEP, meaning that the QSAVIM using a PC 

cannot attain the lowest stiffness value at the DSEP. Similar to the LBM, the 
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asymmetry of the stiffness curve will be reduced along with growing the volume of the 

auxiliary chamber. Then, the analysis of equilibrium position and the procedure for 

designing the QSAVIM using PC having the lowest stiffness value around the DSEP 

investigated and suggested.  

 The fundamental resonance response and force transmissibility of the QSAVIM 

using PC subjected to the externally harmonic force is analyzed through Multi-Scale 

method and the numerical simulations are verified. The simulation indicated that 

because of the effect of asymmetrical stiffness curve, the QSAVIM using PC can be a 

soft or hard system depending on the auxiliary chamber volume and pressure. It also 

confirmed that the lower the dynamic stiffness is, the larger the effective isolation 

region is and the better the isolation effectiveness is. Especially, the lower the 

asymmetry level of the stiffness curve is, the more the effectiveness of suppressing the 

force transmissibility from the load plate to the base is improved. Additionally, 

parameter bifurcation analysis of the QSAVIM using PC had been realized through 

numerical integration from the original dynamic equation. Simultaneously, fixed points 

had been also calculated by using Poincare map. The result proved that the system can 

occur period-1, period-2 or period-3 oscillation depending on the initial conditions.  
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CHAPTER 6 

 CONCLUSIONS AND FUTURE WORKS 

 

6.1 Conclusion 

This thesis gives a comprehensive understanding as well as a guidance of designing 

a QZS isolator using rubber air springs or pneumatic cylinders to prevent the unwanted 

effects of low frequency vibrations (32 rad/s) to the isolated object. This is frequency 

region in which it can be a challenge for the traditional isolation method. The proposed 

model offers a potential application and effectiveness in vibration isolation fields, 

especially low frequency domain. Indeed, the proposed model can be supposed 

including the suspension for vehicles, isolation seats to improve the comfort as well as 

to guarantee healthy and working efficient when the divers or passengers sit or work on 

the ground moving vehicles which are subjected to low excitation frequencies, mounts 

for machineries or equipment sensitizing vibration.  

The advantage of the QZS vibration isolation method motivates development of an 

innovative QZS vibration isolation structure employing the conceptual design of the 

wedge and cam mechanism. Different from other studies relating quasi-zero stiffness 

isolation system, in this thesis, the non-steel elastic elements including rubber air 

springs or pneumatic cylinders were employed to replace steel or magnetic elastic 

elements. A key merit of the innovative model is that the stiffness of the load bearing 

and the stiffness corrected mechanism can be easily adjusted according to the change 

of the isolated load so that the system can always remain the wanted low stiffness value 

at the DSEP. Hence, the proposed model can overcome the conflict between the 

stiffness and the load bearing capacity, meaning that although having low stiffness, the 

load ability and static deformation of the proposed model are still maintained. 

Meanwhile, it is not easy for the traditional isolation method to surmount this 
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contradiction. Especially, the proposed model can be fabricated and applied certainly in 

Viet Nam. The study result proved that the adjustment of the stiffness of both 

mechanisms is realized easily through controlling the air pressure in the air spring. In 

addition, the operation of the proposed model can be easily transferred from passive 

into active state to obtain the wanted isolation response. Whilst, it is very difficult for 

the quasi-zero stiffness vibration isolator using mechanical springs to realize this 

mission. 

Specifically, the result of this study obtained as following:  

1. A QZS vibration isolation model using rubber air springs  

The physical parameters such as effective area and volume of a commercial rubber 

air spring were built and identified experimental. Then, the restoring force model as 

well as stiffness of the air spring due to compressed air was obtained. Moreover, 

because of inheritance of the rubber material which includes the friction between 

reinforce fiber and rubber, and viscoelasticity, the hysteresis curve of the rubber air 

spring was also identified experimentally through Berg’s model and fractional Kelvin-

Voigt’s model. The result confirmed that model of the rubber air spring contributed by 

compressed air, friction, and viscoelasticity follows well the experimental data.  

Based on the result obtained from rubber air spring model, the stiffness equation of 

the QSAVIM was established. Then numerical simulation of the stiffness curve was 

realized meaning that the stiffness curves is a symmetrical concave parabola around the 

DSEP. Over expected working range, the dynamic stiffness of the QSAVIM is lower 

than that of the ETVIM. The pressure ratio, that is the pressure ratio of the load bearing 

mechanism to the stiffness corrected one, is obtained, indicating that the dynamic 

stiffness of the QSAVIM is increased according to the growth of the pressure ratio. 

Thank to this relation, the pressure of both mechanisms can be easily adjusted so that 

the quasi-zero dynamics stiffness of the proposed system is always remained at the 
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DSEP as there is a change of the isolated weight. From that, a procedure for designing 

QSAVIM was set up.  

The dynamic equation of the QSAVIM subjected to a harmonic excitation from the 

base frame was analyzed and built. Based on the approximate analytical method, the 

amplitude-frequency relation was then drawn. Simultaneously, an important index, 

which is used to assess the isolated effectiveness, was also defined and attained that is 

the vibration transmissibility. The numerical simulation revealed that the curve of 

vibration transmissibility as well as the amplitude-frequency is bended to the right, 

appearing the frequency of down and up jump and within this frequency, it can exist 

multiple solutions including resonant and non-resonant one. The frequency region of 

down and up jump can be narrowed according to increasing the pressure ratio 

simultaneously the isolated range is broadened toward low frequency, which is 

meaningful that resonance peak including frequency and amplitude will be reduced. 

Furthermore, the complex dynamic response of the QSAVIM was discovered, 

indicating that within frequency occurring multiple solutions, the initial condition 

comprising the position and velocity will decide which solution can be existed in the 

steady state. Additionally, the bifurcation phenomenon from period-1 to multi period 

solution and vice versa is seen as the isolated weight is larger or smaller than the 

optimal one for which the system can attain the DSEP. This thesis proved the isolated 

effectiveness of the QSAVIM much better than that of the ETVIM.  

In order to assess the theoretical model of the QSAVIM as well as compare 

isolation effectiveness of the proposed model and ETVIM. The prototype of the 

QSAVIM and ETVIM was fabricated. The experimental apparatus was then set up. 

The experimental results confirm the good effect of the stiffness corrected mechanism 

on the isolation response as well as prove the analysis model of the QSAVIM that is 

the expansion of the isolation frequency region according to the increase of the 

pressure ratio. The experiment asserted again the advantage of the QSAVIM against 
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the ETVIM. Indeed, the obtained result is that the proposed model can presented the 

attenuation of vibration transmission from the source to the isolated object in frequency 

region larger than 31.5 rad/s (5Hz) 

2. A QZS vibration isolation model using pneumatic cylinders 

 To show comprehensively the quasi-zero stiffness vibration isolation model using 

air springs, in this thesis, the pneumatic cylinders connecting auxiliary tanks were also 

considered as elastic elements. First of all, the stiffness model of the pneumatic 

cylinder was obtained by the analysis solution based on thermodynamic equation and 

ideal gas. The sliding friction between the piston and cylinder was then taken into 

account. Instead of experiment, this thesis utilized the development of software 

technology and virtual prototyping technique. Particularly, a virtual model of the 

pneumatic cylinder adding an auxiliary tank was built to evaluate the analysis model of 

the pneumatic cylinder and identify the sliding frictional model. The result of the 

virtual simulation confirmed the accepted accuracy of the analysis model. 

Next, the stiffness model of the load bearing mechanism (LBM) using the 

pneumatic cylinder adding the auxiliary tank was drawn and analyzed. The simulation 

result shown clearly that the stiffness of this mechanism is not a constant value that it 

will be changed with respect to the position of the load plate. Moreover, it is a 

nonlinear and asymmetric curve around the DSEP. The asymmetry and nonlinearity 

will be reduced in accordance with the increase in the volume of the cylinder adding 

auxiliary tank. This means that when this volume is large enough, the slope of the 

stiffness curve is very small.  Then, stiffness model of the stiffness corrected 

mechanism (SCM) using the pneumatic cylinders adding auxiliary tanks was also 

obtained. Unlike stiffness curve form of the LBM, the stiffness curve of the SCM is 

always a symmetric parabola round the DSEP. This parabola can be concave or convex 

depending on the volume of the cylinder connecting tank. The analysis result indicated 

that when the auxiliary volume is increased from zero to a critical value, the stiffness 
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curve of the SCM is changed from concave parabola into convex one. In terms of 

isolation, the stiffness curve of the SCM should be concave form. From these analyses, 

the resultant stiffness of the QSAVIM was simulated, showing that the asymmetry of 

the stiffness curve around the DSEP will be reduced according to the increase in the 

auxiliary tank volume of the LBM. This implies that the position at which the 

QSAVIM has the smallest stiffness value will be asymptotic to the DSEP as the 

auxiliary chamber volume is increased 

Dynamic response of the QSAVIM was analyzed in the case in which the load plate 

is excited by a harmonic force. By approximated analytical method, the force 

transmissibility around the primary resonance of the system was attained and simulated 

numerically. The result confirmed that the curve of the force transmissibility may be 

bended to left or right corresponding to soft or hard system, respectively. The bending 

depends on the pressure ratio. Addition, this study revealed that the same lowest 

stiffness value, the more the stiffness curve is symmetrical, the more the vibration 

isolation region is enlarged. Furthermore, the effects of the sliding friction between the 

piston and cylinder on the complex dynamic response of the system were taken into 

account. The simulated result confirmed that this effect is unremarkable. 

Simultaneously, these study results proved the significant effectiveness of the 

QSAVIM to prevent the force transmissibility from the load plate to the base frame. 

 6.2 Future works: 

Although the proposed model can improve the isolation effectiveness in low 

frequency region, the isolation performance of the system is still limited. Because 

1. Resonance peak is still high  

2. Due to passive isolation model, the isolation capacity is still lower than the 

desirable response. 

The next studies will be realized contents as following:  
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- Studying the damping methods to reduce peak frequency  

- Studying control algorithms to improve the isolation performance  
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